Description: If balls are totally bounded in the metric M , then balls are totally bounded in the equivalent metric N . (Contributed by Mario Carneiro, 15-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | equivbnd2.1 | |
|
equivbnd2.2 | |
||
equivbnd2.3 | |
||
equivbnd2.4 | |
||
equivbnd2.5 | |
||
equivbnd2.6 | |
||
equivbnd2.7 | |
||
equivbnd2.8 | |
||
equivbnd2.9 | |
||
Assertion | equivbnd2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equivbnd2.1 | |
|
2 | equivbnd2.2 | |
|
3 | equivbnd2.3 | |
|
4 | equivbnd2.4 | |
|
5 | equivbnd2.5 | |
|
6 | equivbnd2.6 | |
|
7 | equivbnd2.7 | |
|
8 | equivbnd2.8 | |
|
9 | equivbnd2.9 | |
|
10 | totbndbnd | |
|
11 | simpr | |
|
12 | 1 | adantr | |
13 | 8 | bnd2lem | |
14 | 2 13 | sylan | |
15 | metres2 | |
|
16 | 12 14 15 | syl2anc | |
17 | 7 16 | eqeltrid | |
18 | 4 | adantr | |
19 | 14 | sselda | |
20 | 14 | sselda | |
21 | 19 20 | anim12dan | |
22 | 6 | adantlr | |
23 | 21 22 | syldan | |
24 | 7 | oveqi | |
25 | ovres | |
|
26 | 24 25 | eqtrid | |
27 | 26 | adantl | |
28 | 8 | oveqi | |
29 | ovres | |
|
30 | 28 29 | eqtrid | |
31 | 30 | adantl | |
32 | 31 | oveq2d | |
33 | 23 27 32 | 3brtr4d | |
34 | 11 17 18 33 | equivbnd | |
35 | 9 | biimpar | |
36 | 34 35 | syldan | |
37 | bndmet | |
|
38 | 37 | adantl | |
39 | 3 | adantr | |
40 | 5 | adantlr | |
41 | 21 40 | syldan | |
42 | 27 | oveq2d | |
43 | 41 31 42 | 3brtr4d | |
44 | 36 38 39 43 | equivtotbnd | |
45 | 44 | ex | |
46 | 10 45 | impbid2 | |