Metamath Proof Explorer


Theorem equivbnd2

Description: If balls are totally bounded in the metric M , then balls are totally bounded in the equivalent metric N . (Contributed by Mario Carneiro, 15-Sep-2015)

Ref Expression
Hypotheses equivbnd2.1 φMMetX
equivbnd2.2 φNMetX
equivbnd2.3 φR+
equivbnd2.4 φS+
equivbnd2.5 φxXyXxNyRxMy
equivbnd2.6 φxXyXxMySxNy
equivbnd2.7 C=MY×Y
equivbnd2.8 D=NY×Y
equivbnd2.9 φCTotBndYCBndY
Assertion equivbnd2 φDTotBndYDBndY

Proof

Step Hyp Ref Expression
1 equivbnd2.1 φMMetX
2 equivbnd2.2 φNMetX
3 equivbnd2.3 φR+
4 equivbnd2.4 φS+
5 equivbnd2.5 φxXyXxNyRxMy
6 equivbnd2.6 φxXyXxMySxNy
7 equivbnd2.7 C=MY×Y
8 equivbnd2.8 D=NY×Y
9 equivbnd2.9 φCTotBndYCBndY
10 totbndbnd DTotBndYDBndY
11 simpr φDBndYDBndY
12 1 adantr φDBndYMMetX
13 8 bnd2lem NMetXDBndYYX
14 2 13 sylan φDBndYYX
15 metres2 MMetXYXMY×YMetY
16 12 14 15 syl2anc φDBndYMY×YMetY
17 7 16 eqeltrid φDBndYCMetY
18 4 adantr φDBndYS+
19 14 sselda φDBndYxYxX
20 14 sselda φDBndYyYyX
21 19 20 anim12dan φDBndYxYyYxXyX
22 6 adantlr φDBndYxXyXxMySxNy
23 21 22 syldan φDBndYxYyYxMySxNy
24 7 oveqi xCy=xMY×Yy
25 ovres xYyYxMY×Yy=xMy
26 24 25 eqtrid xYyYxCy=xMy
27 26 adantl φDBndYxYyYxCy=xMy
28 8 oveqi xDy=xNY×Yy
29 ovres xYyYxNY×Yy=xNy
30 28 29 eqtrid xYyYxDy=xNy
31 30 adantl φDBndYxYyYxDy=xNy
32 31 oveq2d φDBndYxYyYSxDy=SxNy
33 23 27 32 3brtr4d φDBndYxYyYxCySxDy
34 11 17 18 33 equivbnd φDBndYCBndY
35 9 biimpar φCBndYCTotBndY
36 34 35 syldan φDBndYCTotBndY
37 bndmet DBndYDMetY
38 37 adantl φDBndYDMetY
39 3 adantr φDBndYR+
40 5 adantlr φDBndYxXyXxNyRxMy
41 21 40 syldan φDBndYxYyYxNyRxMy
42 27 oveq2d φDBndYxYyYRxCy=RxMy
43 41 31 42 3brtr4d φDBndYxYyYxDyRxCy
44 36 38 39 43 equivtotbnd φDBndYDTotBndY
45 44 ex φDBndYDTotBndY
46 10 45 impbid2 φDTotBndYDBndY