Metamath Proof Explorer


Theorem prdsbnd

Description: The product metric over finite index set is bounded if all the factors are bounded. (Contributed by Mario Carneiro, 13-Sep-2015)

Ref Expression
Hypotheses prdsbnd.y Y = S 𝑠 R
prdsbnd.b B = Base Y
prdsbnd.v V = Base R x
prdsbnd.e E = dist R x V × V
prdsbnd.d D = dist Y
prdsbnd.s φ S W
prdsbnd.i φ I Fin
prdsbnd.r φ R Fn I
prdsbnd.m φ x I E Bnd V
Assertion prdsbnd φ D Bnd B

Proof

Step Hyp Ref Expression
1 prdsbnd.y Y = S 𝑠 R
2 prdsbnd.b B = Base Y
3 prdsbnd.v V = Base R x
4 prdsbnd.e E = dist R x V × V
5 prdsbnd.d D = dist Y
6 prdsbnd.s φ S W
7 prdsbnd.i φ I Fin
8 prdsbnd.r φ R Fn I
9 prdsbnd.m φ x I E Bnd V
10 eqid S 𝑠 x I R x = S 𝑠 x I R x
11 eqid Base S 𝑠 x I R x = Base S 𝑠 x I R x
12 eqid dist S 𝑠 x I R x = dist S 𝑠 x I R x
13 fvexd φ x I R x V
14 bndmet E Bnd V E Met V
15 9 14 syl φ x I E Met V
16 10 11 3 4 12 6 7 13 15 prdsmet φ dist S 𝑠 x I R x Met Base S 𝑠 x I R x
17 dffn5 R Fn I R = x I R x
18 8 17 sylib φ R = x I R x
19 18 oveq2d φ S 𝑠 R = S 𝑠 x I R x
20 1 19 syl5eq φ Y = S 𝑠 x I R x
21 20 fveq2d φ dist Y = dist S 𝑠 x I R x
22 5 21 syl5eq φ D = dist S 𝑠 x I R x
23 20 fveq2d φ Base Y = Base S 𝑠 x I R x
24 2 23 syl5eq φ B = Base S 𝑠 x I R x
25 24 fveq2d φ Met B = Met Base S 𝑠 x I R x
26 16 22 25 3eltr4d φ D Met B
27 isbnd3 E Bnd V E Met V w E : V × V 0 w
28 27 simprbi E Bnd V w E : V × V 0 w
29 9 28 syl φ x I w E : V × V 0 w
30 29 ralrimiva φ x I w E : V × V 0 w
31 oveq2 w = k x 0 w = 0 k x
32 31 feq3d w = k x E : V × V 0 w E : V × V 0 k x
33 32 ac6sfi I Fin x I w E : V × V 0 w k k : I x I E : V × V 0 k x
34 7 30 33 syl2anc φ k k : I x I E : V × V 0 k x
35 frn k : I ran k
36 35 adantl φ k : I ran k
37 0red φ 0
38 37 snssd φ 0
39 38 adantr φ k : I 0
40 36 39 unssd φ k : I ran k 0
41 ffn k : I k Fn I
42 dffn4 k Fn I k : I onto ran k
43 41 42 sylib k : I k : I onto ran k
44 fofi I Fin k : I onto ran k ran k Fin
45 7 43 44 syl2an φ k : I ran k Fin
46 snfi 0 Fin
47 unfi ran k Fin 0 Fin ran k 0 Fin
48 45 46 47 sylancl φ k : I ran k 0 Fin
49 ssun2 0 ran k 0
50 c0ex 0 V
51 50 snid 0 0
52 49 51 sselii 0 ran k 0
53 ne0i 0 ran k 0 ran k 0
54 52 53 mp1i φ k : I ran k 0
55 ltso < Or
56 fisupcl < Or ran k 0 Fin ran k 0 ran k 0 sup ran k 0 < ran k 0
57 55 56 mpan ran k 0 Fin ran k 0 ran k 0 sup ran k 0 < ran k 0
58 48 54 40 57 syl3anc φ k : I sup ran k 0 < ran k 0
59 40 58 sseldd φ k : I sup ran k 0 <
60 59 adantrr φ k : I x I E : V × V 0 k x sup ran k 0 <
61 metf D Met B D : B × B
62 ffn D : B × B D Fn B × B
63 26 61 62 3syl φ D Fn B × B
64 63 adantr φ k : I x I E : V × V 0 k x D Fn B × B
65 26 ad2antrr φ f B g B k : I x I E : V × V 0 k x D Met B
66 simprl φ f B g B f B
67 66 adantr φ f B g B k : I x I E : V × V 0 k x f B
68 simprr φ f B g B g B
69 68 adantr φ f B g B k : I x I E : V × V 0 k x g B
70 metcl D Met B f B g B f D g
71 65 67 69 70 syl3anc φ f B g B k : I x I E : V × V 0 k x f D g
72 metge0 D Met B f B g B 0 f D g
73 65 67 69 72 syl3anc φ f B g B k : I x I E : V × V 0 k x 0 f D g
74 22 oveqdr φ f B g B f D g = f dist S 𝑠 x I R x g
75 6 adantr φ f B g B S W
76 7 adantr φ f B g B I Fin
77 fvexd φ f B g B x I R x V
78 77 ralrimiva φ f B g B x I R x V
79 24 adantr φ f B g B B = Base S 𝑠 x I R x
80 66 79 eleqtrd φ f B g B f Base S 𝑠 x I R x
81 68 79 eleqtrd φ f B g B g Base S 𝑠 x I R x
82 10 11 75 76 78 80 81 3 4 12 prdsdsval3 φ f B g B f dist S 𝑠 x I R x g = sup ran x I f x E g x 0 * <
83 74 82 eqtrd φ f B g B f D g = sup ran x I f x E g x 0 * <
84 83 adantr φ f B g B k : I x I E : V × V 0 k x f D g = sup ran x I f x E g x 0 * <
85 15 adantlr φ f B g B x I E Met V
86 10 11 75 76 78 3 80 prdsbascl φ f B g B x I f x V
87 86 r19.21bi φ f B g B x I f x V
88 10 11 75 76 78 3 81 prdsbascl φ f B g B x I g x V
89 88 r19.21bi φ f B g B x I g x V
90 metcl E Met V f x V g x V f x E g x
91 85 87 89 90 syl3anc φ f B g B x I f x E g x
92 91 ad2ant2r φ f B g B k : I x I E : V × V 0 k x f x E g x
93 ffvelrn k : I x I k x
94 93 ad2ant2lr φ f B g B k : I x I E : V × V 0 k x k x
95 59 adantlr φ f B g B k : I sup ran k 0 <
96 95 adantr φ f B g B k : I x I E : V × V 0 k x sup ran k 0 <
97 simprr φ f B g B k : I x I E : V × V 0 k x E : V × V 0 k x
98 87 ad2ant2r φ f B g B k : I x I E : V × V 0 k x f x V
99 89 ad2ant2r φ f B g B k : I x I E : V × V 0 k x g x V
100 97 98 99 fovrnd φ f B g B k : I x I E : V × V 0 k x f x E g x 0 k x
101 0re 0
102 elicc2 0 k x f x E g x 0 k x f x E g x 0 f x E g x f x E g x k x
103 101 94 102 sylancr φ f B g B k : I x I E : V × V 0 k x f x E g x 0 k x f x E g x 0 f x E g x f x E g x k x
104 100 103 mpbid φ f B g B k : I x I E : V × V 0 k x f x E g x 0 f x E g x f x E g x k x
105 104 simp3d φ f B g B k : I x I E : V × V 0 k x f x E g x k x
106 40 adantlr φ f B g B k : I ran k 0
107 106 adantr φ f B g B k : I x I E : V × V 0 k x ran k 0
108 52 53 mp1i φ f B g B k : I x I E : V × V 0 k x ran k 0
109 fimaxre2 ran k 0 ran k 0 Fin z w ran k 0 w z
110 40 48 109 syl2anc φ k : I z w ran k 0 w z
111 110 adantlr φ f B g B k : I z w ran k 0 w z
112 111 adantr φ f B g B k : I x I E : V × V 0 k x z w ran k 0 w z
113 ssun1 ran k ran k 0
114 41 ad2antlr φ f B g B k : I x I E : V × V 0 k x k Fn I
115 simprl φ f B g B k : I x I E : V × V 0 k x x I
116 fnfvelrn k Fn I x I k x ran k
117 114 115 116 syl2anc φ f B g B k : I x I E : V × V 0 k x k x ran k
118 113 117 sseldi φ f B g B k : I x I E : V × V 0 k x k x ran k 0
119 suprub ran k 0 ran k 0 z w ran k 0 w z k x ran k 0 k x sup ran k 0 <
120 107 108 112 118 119 syl31anc φ f B g B k : I x I E : V × V 0 k x k x sup ran k 0 <
121 92 94 96 105 120 letrd φ f B g B k : I x I E : V × V 0 k x f x E g x sup ran k 0 <
122 121 expr φ f B g B k : I x I E : V × V 0 k x f x E g x sup ran k 0 <
123 122 ralimdva φ f B g B k : I x I E : V × V 0 k x x I f x E g x sup ran k 0 <
124 123 impr φ f B g B k : I x I E : V × V 0 k x x I f x E g x sup ran k 0 <
125 ovex f x E g x V
126 125 rgenw x I f x E g x V
127 eqid x I f x E g x = x I f x E g x
128 breq1 w = f x E g x w sup ran k 0 < f x E g x sup ran k 0 <
129 127 128 ralrnmptw x I f x E g x V w ran x I f x E g x w sup ran k 0 < x I f x E g x sup ran k 0 <
130 126 129 ax-mp w ran x I f x E g x w sup ran k 0 < x I f x E g x sup ran k 0 <
131 124 130 sylibr φ f B g B k : I x I E : V × V 0 k x w ran x I f x E g x w sup ran k 0 <
132 40 ad2ant2r φ f B g B k : I x I E : V × V 0 k x ran k 0
133 52 53 mp1i φ f B g B k : I x I E : V × V 0 k x ran k 0
134 110 ad2ant2r φ f B g B k : I x I E : V × V 0 k x z w ran k 0 w z
135 52 a1i φ f B g B k : I x I E : V × V 0 k x 0 ran k 0
136 suprub ran k 0 ran k 0 z w ran k 0 w z 0 ran k 0 0 sup ran k 0 <
137 132 133 134 135 136 syl31anc φ f B g B k : I x I E : V × V 0 k x 0 sup ran k 0 <
138 elsni w 0 w = 0
139 138 breq1d w 0 w sup ran k 0 < 0 sup ran k 0 <
140 137 139 syl5ibrcom φ f B g B k : I x I E : V × V 0 k x w 0 w sup ran k 0 <
141 140 ralrimiv φ f B g B k : I x I E : V × V 0 k x w 0 w sup ran k 0 <
142 ralunb w ran x I f x E g x 0 w sup ran k 0 < w ran x I f x E g x w sup ran k 0 < w 0 w sup ran k 0 <
143 131 141 142 sylanbrc φ f B g B k : I x I E : V × V 0 k x w ran x I f x E g x 0 w sup ran k 0 <
144 91 fmpttd φ f B g B x I f x E g x : I
145 144 frnd φ f B g B ran x I f x E g x
146 0red φ f B g B 0
147 146 snssd φ f B g B 0
148 145 147 unssd φ f B g B ran x I f x E g x 0
149 ressxr *
150 148 149 sstrdi φ f B g B ran x I f x E g x 0 *
151 150 adantr φ f B g B k : I x I E : V × V 0 k x ran x I f x E g x 0 *
152 60 adantlr φ f B g B k : I x I E : V × V 0 k x sup ran k 0 <
153 152 rexrd φ f B g B k : I x I E : V × V 0 k x sup ran k 0 < *
154 supxrleub ran x I f x E g x 0 * sup ran k 0 < * sup ran x I f x E g x 0 * < sup ran k 0 < w ran x I f x E g x 0 w sup ran k 0 <
155 151 153 154 syl2anc φ f B g B k : I x I E : V × V 0 k x sup ran x I f x E g x 0 * < sup ran k 0 < w ran x I f x E g x 0 w sup ran k 0 <
156 143 155 mpbird φ f B g B k : I x I E : V × V 0 k x sup ran x I f x E g x 0 * < sup ran k 0 <
157 84 156 eqbrtrd φ f B g B k : I x I E : V × V 0 k x f D g sup ran k 0 <
158 elicc2 0 sup ran k 0 < f D g 0 sup ran k 0 < f D g 0 f D g f D g sup ran k 0 <
159 101 152 158 sylancr φ f B g B k : I x I E : V × V 0 k x f D g 0 sup ran k 0 < f D g 0 f D g f D g sup ran k 0 <
160 71 73 157 159 mpbir3and φ f B g B k : I x I E : V × V 0 k x f D g 0 sup ran k 0 <
161 160 an32s φ k : I x I E : V × V 0 k x f B g B f D g 0 sup ran k 0 <
162 161 ralrimivva φ k : I x I E : V × V 0 k x f B g B f D g 0 sup ran k 0 <
163 ffnov D : B × B 0 sup ran k 0 < D Fn B × B f B g B f D g 0 sup ran k 0 <
164 64 162 163 sylanbrc φ k : I x I E : V × V 0 k x D : B × B 0 sup ran k 0 <
165 oveq2 m = sup ran k 0 < 0 m = 0 sup ran k 0 <
166 165 feq3d m = sup ran k 0 < D : B × B 0 m D : B × B 0 sup ran k 0 <
167 166 rspcev sup ran k 0 < D : B × B 0 sup ran k 0 < m D : B × B 0 m
168 60 164 167 syl2anc φ k : I x I E : V × V 0 k x m D : B × B 0 m
169 34 168 exlimddv φ m D : B × B 0 m
170 isbnd3 D Bnd B D Met B m D : B × B 0 m
171 26 169 170 sylanbrc φ D Bnd B