Metamath Proof Explorer


Theorem estrcco

Description: Composition in the category of extensible structures. (Contributed by AV, 7-Mar-2020)

Ref Expression
Hypotheses estrcbas.c C = ExtStrCat U
estrcbas.u φ U V
estrcco.o · ˙ = comp C
estrcco.x φ X U
estrcco.y φ Y U
estrcco.z φ Z U
estrcco.a A = Base X
estrcco.b B = Base Y
estrcco.d D = Base Z
estrcco.f φ F : A B
estrcco.g φ G : B D
Assertion estrcco φ G X Y · ˙ Z F = G F

Proof

Step Hyp Ref Expression
1 estrcbas.c C = ExtStrCat U
2 estrcbas.u φ U V
3 estrcco.o · ˙ = comp C
4 estrcco.x φ X U
5 estrcco.y φ Y U
6 estrcco.z φ Z U
7 estrcco.a A = Base X
8 estrcco.b B = Base Y
9 estrcco.d D = Base Z
10 estrcco.f φ F : A B
11 estrcco.g φ G : B D
12 1 2 3 estrccofval φ · ˙ = v U × U , z U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f
13 fveq2 z = Z Base z = Base Z
14 13 adantl v = X Y z = Z Base z = Base Z
15 14 adantl φ v = X Y z = Z Base z = Base Z
16 simprl φ v = X Y z = Z v = X Y
17 16 fveq2d φ v = X Y z = Z 2 nd v = 2 nd X Y
18 op2ndg X U Y U 2 nd X Y = Y
19 4 5 18 syl2anc φ 2 nd X Y = Y
20 19 adantr φ v = X Y z = Z 2 nd X Y = Y
21 17 20 eqtrd φ v = X Y z = Z 2 nd v = Y
22 21 fveq2d φ v = X Y z = Z Base 2 nd v = Base Y
23 15 22 oveq12d φ v = X Y z = Z Base z Base 2 nd v = Base Z Base Y
24 16 fveq2d φ v = X Y z = Z 1 st v = 1 st X Y
25 24 fveq2d φ v = X Y z = Z Base 1 st v = Base 1 st X Y
26 op1stg X U Y U 1 st X Y = X
27 4 5 26 syl2anc φ 1 st X Y = X
28 27 fveq2d φ Base 1 st X Y = Base X
29 28 adantr φ v = X Y z = Z Base 1 st X Y = Base X
30 25 29 eqtrd φ v = X Y z = Z Base 1 st v = Base X
31 22 30 oveq12d φ v = X Y z = Z Base 2 nd v Base 1 st v = Base Y Base X
32 eqidd φ v = X Y z = Z g f = g f
33 23 31 32 mpoeq123dv φ v = X Y z = Z g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f = g Base Z Base Y , f Base Y Base X g f
34 4 5 opelxpd φ X Y U × U
35 ovex Base Z Base Y V
36 ovex Base Y Base X V
37 35 36 mpoex g Base Z Base Y , f Base Y Base X g f V
38 37 a1i φ g Base Z Base Y , f Base Y Base X g f V
39 12 33 34 6 38 ovmpod φ X Y · ˙ Z = g Base Z Base Y , f Base Y Base X g f
40 simpl g = G f = F g = G
41 simpr g = G f = F f = F
42 40 41 coeq12d g = G f = F g f = G F
43 42 adantl φ g = G f = F g f = G F
44 8 a1i φ B = Base Y
45 44 eqcomd φ Base Y = B
46 9 a1i φ D = Base Z
47 46 eqcomd φ Base Z = D
48 45 47 feq23d φ G : Base Y Base Z G : B D
49 11 48 mpbird φ G : Base Y Base Z
50 fvexd φ Base Z V
51 fvexd φ Base Y V
52 50 51 elmapd φ G Base Z Base Y G : Base Y Base Z
53 49 52 mpbird φ G Base Z Base Y
54 7 a1i φ A = Base X
55 54 eqcomd φ Base X = A
56 55 45 feq23d φ F : Base X Base Y F : A B
57 10 56 mpbird φ F : Base X Base Y
58 fvexd φ Base X V
59 51 58 elmapd φ F Base Y Base X F : Base X Base Y
60 57 59 mpbird φ F Base Y Base X
61 coexg G Base Z Base Y F Base Y Base X G F V
62 53 60 61 syl2anc φ G F V
63 39 43 53 60 62 ovmpod φ G X Y · ˙ Z F = G F