Metamath Proof Explorer


Theorem estrcco

Description: Composition in the category of extensible structures. (Contributed by AV, 7-Mar-2020)

Ref Expression
Hypotheses estrcbas.c C=ExtStrCatU
estrcbas.u φUV
estrcco.o ·˙=compC
estrcco.x φXU
estrcco.y φYU
estrcco.z φZU
estrcco.a A=BaseX
estrcco.b B=BaseY
estrcco.d D=BaseZ
estrcco.f φF:AB
estrcco.g φG:BD
Assertion estrcco φGXY·˙ZF=GF

Proof

Step Hyp Ref Expression
1 estrcbas.c C=ExtStrCatU
2 estrcbas.u φUV
3 estrcco.o ·˙=compC
4 estrcco.x φXU
5 estrcco.y φYU
6 estrcco.z φZU
7 estrcco.a A=BaseX
8 estrcco.b B=BaseY
9 estrcco.d D=BaseZ
10 estrcco.f φF:AB
11 estrcco.g φG:BD
12 1 2 3 estrccofval φ·˙=vU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgf
13 fveq2 z=ZBasez=BaseZ
14 13 adantl v=XYz=ZBasez=BaseZ
15 14 adantl φv=XYz=ZBasez=BaseZ
16 simprl φv=XYz=Zv=XY
17 16 fveq2d φv=XYz=Z2ndv=2ndXY
18 op2ndg XUYU2ndXY=Y
19 4 5 18 syl2anc φ2ndXY=Y
20 19 adantr φv=XYz=Z2ndXY=Y
21 17 20 eqtrd φv=XYz=Z2ndv=Y
22 21 fveq2d φv=XYz=ZBase2ndv=BaseY
23 15 22 oveq12d φv=XYz=ZBasezBase2ndv=BaseZBaseY
24 16 fveq2d φv=XYz=Z1stv=1stXY
25 24 fveq2d φv=XYz=ZBase1stv=Base1stXY
26 op1stg XUYU1stXY=X
27 4 5 26 syl2anc φ1stXY=X
28 27 fveq2d φBase1stXY=BaseX
29 28 adantr φv=XYz=ZBase1stXY=BaseX
30 25 29 eqtrd φv=XYz=ZBase1stv=BaseX
31 22 30 oveq12d φv=XYz=ZBase2ndvBase1stv=BaseYBaseX
32 eqidd φv=XYz=Zgf=gf
33 23 31 32 mpoeq123dv φv=XYz=ZgBasezBase2ndv,fBase2ndvBase1stvgf=gBaseZBaseY,fBaseYBaseXgf
34 4 5 opelxpd φXYU×U
35 ovex BaseZBaseYV
36 ovex BaseYBaseXV
37 35 36 mpoex gBaseZBaseY,fBaseYBaseXgfV
38 37 a1i φgBaseZBaseY,fBaseYBaseXgfV
39 12 33 34 6 38 ovmpod φXY·˙Z=gBaseZBaseY,fBaseYBaseXgf
40 simpl g=Gf=Fg=G
41 simpr g=Gf=Ff=F
42 40 41 coeq12d g=Gf=Fgf=GF
43 42 adantl φg=Gf=Fgf=GF
44 8 a1i φB=BaseY
45 44 eqcomd φBaseY=B
46 9 a1i φD=BaseZ
47 46 eqcomd φBaseZ=D
48 45 47 feq23d φG:BaseYBaseZG:BD
49 11 48 mpbird φG:BaseYBaseZ
50 fvexd φBaseZV
51 fvexd φBaseYV
52 50 51 elmapd φGBaseZBaseYG:BaseYBaseZ
53 49 52 mpbird φGBaseZBaseY
54 7 a1i φA=BaseX
55 54 eqcomd φBaseX=A
56 55 45 feq23d φF:BaseXBaseYF:AB
57 10 56 mpbird φF:BaseXBaseY
58 fvexd φBaseXV
59 51 58 elmapd φFBaseYBaseXF:BaseXBaseY
60 57 59 mpbird φFBaseYBaseX
61 coexg GBaseZBaseYFBaseYBaseXGFV
62 53 60 61 syl2anc φGFV
63 39 43 53 60 62 ovmpod φGXY·˙ZF=GF