Metamath Proof Explorer


Theorem esumaddf

Description: Addition of infinite sums. (Contributed by Thierry Arnoux, 22-Jun-2017)

Ref Expression
Hypotheses esumaddf.0 k φ
esumaddf.a _ k A
esumaddf.1 φ A V
esumaddf.2 φ k A B 0 +∞
esumaddf.3 φ k A C 0 +∞
Assertion esumaddf φ * k A B + 𝑒 C = * k A B + 𝑒 * k A C

Proof

Step Hyp Ref Expression
1 esumaddf.0 k φ
2 esumaddf.a _ k A
3 esumaddf.1 φ A V
4 esumaddf.2 φ k A B 0 +∞
5 esumaddf.3 φ k A C 0 +∞
6 ge0xaddcl B 0 +∞ C 0 +∞ B + 𝑒 C 0 +∞
7 4 5 6 syl2anc φ k A B + 𝑒 C 0 +∞
8 xrge0base 0 +∞ = Base 𝑠 * 𝑠 0 +∞
9 xrge0plusg + 𝑒 = + 𝑠 * 𝑠 0 +∞
10 xrge0cmn 𝑠 * 𝑠 0 +∞ CMnd
11 10 a1i φ 𝑠 * 𝑠 0 +∞ CMnd
12 xrge0tmd 𝑠 * 𝑠 0 +∞ TopMnd
13 12 a1i φ 𝑠 * 𝑠 0 +∞ TopMnd
14 nfcv _ k 0 +∞
15 eqid k A B = k A B
16 1 2 14 4 15 fmptdF φ k A B : A 0 +∞
17 eqid k A C = k A C
18 1 2 14 5 17 fmptdF φ k A C : A 0 +∞
19 1 2 3 4 esumel φ * k A B 𝑠 * 𝑠 0 +∞ tsums k A B
20 1 2 3 5 esumel φ * k A C 𝑠 * 𝑠 0 +∞ tsums k A C
21 8 9 11 13 3 16 18 19 20 tsmsadd φ * k A B + 𝑒 * k A C 𝑠 * 𝑠 0 +∞ tsums k A B + 𝑒 f k A C
22 eqidd φ k A B = k A B
23 eqidd φ k A C = k A C
24 1 2 3 4 5 22 23 offval2f φ k A B + 𝑒 f k A C = k A B + 𝑒 C
25 24 oveq2d φ 𝑠 * 𝑠 0 +∞ tsums k A B + 𝑒 f k A C = 𝑠 * 𝑠 0 +∞ tsums k A B + 𝑒 C
26 21 25 eleqtrd φ * k A B + 𝑒 * k A C 𝑠 * 𝑠 0 +∞ tsums k A B + 𝑒 C
27 1 2 3 7 26 esumid φ * k A B + 𝑒 C = * k A B + 𝑒 * k A C