Metamath Proof Explorer


Theorem esumcvgre

Description: All terms of a converging extended sum shall be finite. (Contributed by Thierry Arnoux, 23-Sep-2019)

Ref Expression
Hypotheses esumcvgre.0 k φ
esumcvgre.1 φ A V
esumcvgre.2 φ k A B 0 +∞
esumcvgre.3 φ * k A B
Assertion esumcvgre φ k A B

Proof

Step Hyp Ref Expression
1 esumcvgre.0 k φ
2 esumcvgre.1 φ A V
3 esumcvgre.2 φ k A B 0 +∞
4 esumcvgre.3 φ * k A B
5 nfre1 k k A B = +∞
6 1 5 nfan k φ k A B = +∞
7 2 adantr φ k A B = +∞ A V
8 3 adantlr φ k A B = +∞ k A B 0 +∞
9 simpr φ k A B = +∞ k A B = +∞
10 6 7 8 9 esumpinfval φ k A B = +∞ * k A B = +∞
11 ltpnf * k A B * k A B < +∞
12 4 11 syl φ * k A B < +∞
13 4 12 gtned φ +∞ * k A B
14 13 adantr φ k A B = +∞ +∞ * k A B
15 necom +∞ * k A B * k A B +∞
16 15 imbi2i φ k A B = +∞ +∞ * k A B φ k A B = +∞ * k A B +∞
17 14 16 mpbi φ k A B = +∞ * k A B +∞
18 17 neneqd φ k A B = +∞ ¬ * k A B = +∞
19 10 18 pm2.65da φ ¬ k A B = +∞
20 ralnex k A ¬ B = +∞ ¬ k A B = +∞
21 19 20 sylibr φ k A ¬ B = +∞
22 21 r19.21bi φ k A ¬ B = +∞
23 eliccxr B 0 +∞ B *
24 xrge0neqmnf B 0 +∞ B −∞
25 xrnemnf B * B −∞ B B = +∞
26 25 biimpi B * B −∞ B B = +∞
27 23 24 26 syl2anc B 0 +∞ B B = +∞
28 3 27 syl φ k A B B = +∞
29 28 orcomd φ k A B = +∞ B
30 29 orcanai φ k A ¬ B = +∞ B
31 22 30 mpdan φ k A B