Metamath Proof Explorer


Theorem esumgect

Description: "Send n to +oo " in an inequality with an extended sum. (Contributed by Thierry Arnoux, 24-May-2020)

Ref Expression
Hypotheses esumsup.1 φB0+∞
esumsup.2 φkA0+∞
esumgect.1 φn*k=1nAB
Assertion esumgect φ*kAB

Proof

Step Hyp Ref Expression
1 esumsup.1 φB0+∞
2 esumsup.2 φkA0+∞
3 esumgect.1 φn*k=1nAB
4 1 2 esumsup φ*kA=suprann*k=1nA*<
5 nfv nφ
6 nfcv _nz
7 nfmpt1 _nn*k=1nA
8 7 nfrn _nrann*k=1nA
9 6 8 nfel nzrann*k=1nA
10 5 9 nfan nφzrann*k=1nA
11 simpr φzrann*k=1nAnz=*k=1nAz=*k=1nA
12 simplll φzrann*k=1nAnz=*k=1nAφ
13 simplr φzrann*k=1nAnz=*k=1nAn
14 12 13 3 syl2anc φzrann*k=1nAnz=*k=1nA*k=1nAB
15 11 14 eqbrtrd φzrann*k=1nAnz=*k=1nAzB
16 eqid n*k=1nA=n*k=1nA
17 esumex *k=1nAV
18 16 17 elrnmpti zrann*k=1nAnz=*k=1nA
19 18 biimpi zrann*k=1nAnz=*k=1nA
20 19 adantl φzrann*k=1nAnz=*k=1nA
21 10 15 20 r19.29af φzrann*k=1nAzB
22 21 ralrimiva φzrann*k=1nAzB
23 ovexd φn1nV
24 simpll φnk1nφ
25 fz1ssnn 1n
26 25 a1i φn1n
27 26 sselda φnk1nk
28 24 27 2 syl2anc φnk1nA0+∞
29 28 ralrimiva φnk1nA0+∞
30 nfcv _k1n
31 30 esumcl 1nVk1nA0+∞*k=1nA0+∞
32 23 29 31 syl2anc φn*k=1nA0+∞
33 32 ralrimiva φn*k=1nA0+∞
34 16 rnmptss n*k=1nA0+∞rann*k=1nA0+∞
35 33 34 syl φrann*k=1nA0+∞
36 iccssxr 0+∞*
37 35 36 sstrdi φrann*k=1nA*
38 36 1 sselid φB*
39 supxrleub rann*k=1nA*B*suprann*k=1nA*<Bzrann*k=1nAzB
40 37 38 39 syl2anc φsuprann*k=1nA*<Bzrann*k=1nAzB
41 22 40 mpbird φsuprann*k=1nA*<B
42 4 41 eqbrtrd φ*kAB