Metamath Proof Explorer


Theorem etransclem11

Description: A change of bound variable, often used in proofs for etransc . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Assertion etransclem11 n0c0n0M|j=0Mcj=n=m0d0m0M|k=0Mdk=m

Proof

Step Hyp Ref Expression
1 oveq2 n=m0n=0m
2 1 oveq1d n=m0n0M=0m0M
3 2 rabeqdv n=mc0n0M|j=0Mcj=n=c0m0M|j=0Mcj=n
4 fveq2 j=kcj=ck
5 4 cbvsumv j=0Mcj=k=0Mck
6 fveq1 c=dck=dk
7 6 sumeq2sdv c=dk=0Mck=k=0Mdk
8 5 7 eqtrid c=dj=0Mcj=k=0Mdk
9 8 eqeq1d c=dj=0Mcj=nk=0Mdk=n
10 9 cbvrabv c0m0M|j=0Mcj=n=d0m0M|k=0Mdk=n
11 eqeq2 n=mk=0Mdk=nk=0Mdk=m
12 11 rabbidv n=md0m0M|k=0Mdk=n=d0m0M|k=0Mdk=m
13 10 12 eqtrid n=mc0m0M|j=0Mcj=n=d0m0M|k=0Mdk=m
14 3 13 eqtrd n=mc0n0M|j=0Mcj=n=d0m0M|k=0Mdk=m
15 14 cbvmptv n0c0n0M|j=0Mcj=n=m0d0m0M|k=0Mdk=m