Metamath Proof Explorer


Theorem etransclem13

Description: F applied to Y . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem13.x φX
etransclem13.p φP
etransclem13.m φM0
etransclem13.f F=xXxP1j=1MxjP
etransclem13.y φYX
Assertion etransclem13 φFY=j=0MYjifj=0P1P

Proof

Step Hyp Ref Expression
1 etransclem13.x φX
2 etransclem13.p φP
3 etransclem13.m φM0
4 etransclem13.f F=xXxP1j=1MxjP
5 etransclem13.y φYX
6 eqid j0MxXxjifj=0P1P=j0MxXxjifj=0P1P
7 eqid xXj=0Mj0MxXxjifj=0P1Pjx=xXj=0Mj0MxXxjifj=0P1Pjx
8 1 2 3 4 6 7 etransclem4 φF=xXj=0Mj0MxXxjifj=0P1Pjx
9 simpr φj0Mj0M
10 cnex V
11 10 ssex XXV
12 mptexg XVyXyjifj=0P1PV
13 1 11 12 3syl φyXyjifj=0P1PV
14 13 adantr φj0MyXyjifj=0P1PV
15 oveq1 x=yxj=yj
16 15 oveq1d x=yxjifj=0P1P=yjifj=0P1P
17 16 cbvmptv xXxjifj=0P1P=yXyjifj=0P1P
18 17 mpteq2i j0MxXxjifj=0P1P=j0MyXyjifj=0P1P
19 18 fvmpt2 j0MyXyjifj=0P1PVj0MxXxjifj=0P1Pj=yXyjifj=0P1P
20 9 14 19 syl2anc φj0Mj0MxXxjifj=0P1Pj=yXyjifj=0P1P
21 20 adantlr φx=Yj0Mj0MxXxjifj=0P1Pj=yXyjifj=0P1P
22 simpr x=Yy=xy=x
23 simpl x=Yy=xx=Y
24 22 23 eqtrd x=Yy=xy=Y
25 oveq1 y=Yyj=Yj
26 25 oveq1d y=Yyjifj=0P1P=Yjifj=0P1P
27 24 26 syl x=Yy=xyjifj=0P1P=Yjifj=0P1P
28 27 adantll φx=Yy=xyjifj=0P1P=Yjifj=0P1P
29 28 adantlr φx=Yj0My=xyjifj=0P1P=Yjifj=0P1P
30 simpr φx=Yx=Y
31 5 adantr φx=YYX
32 30 31 eqeltrd φx=YxX
33 32 adantr φx=Yj0MxX
34 ovexd φx=Yj0MYjifj=0P1PV
35 21 29 33 34 fvmptd φx=Yj0Mj0MxXxjifj=0P1Pjx=Yjifj=0P1P
36 35 prodeq2dv φx=Yj=0Mj0MxXxjifj=0P1Pjx=j=0MYjifj=0P1P
37 prodex j=0MYjifj=0P1PV
38 37 a1i φj=0MYjifj=0P1PV
39 8 36 5 38 fvmptd φFY=j=0MYjifj=0P1P