Description: The second member of the state decreases with each iteration of the step function E for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011) (Revised by Mario Carneiro, 29-May-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | eucalgval.1 | |
|
Assertion | eucalglt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eucalgval.1 | |
|
2 | 1 | eucalgval | |
3 | 2 | adantr | |
4 | simpr | |
|
5 | iftrue | |
|
6 | 5 | eqeq2d | |
7 | fveq2 | |
|
8 | 6 7 | syl6bi | |
9 | eqeq2 | |
|
10 | 8 9 | sylibd | |
11 | 3 10 | syl5com | |
12 | 11 | necon3ad | |
13 | 4 12 | mpd | |
14 | 13 | iffalsed | |
15 | 3 14 | eqtrd | |
16 | 15 | fveq2d | |
17 | fvex | |
|
18 | fvex | |
|
19 | 17 18 | op2nd | |
20 | 16 19 | eqtrdi | |
21 | 1st2nd2 | |
|
22 | 21 | adantr | |
23 | 22 | fveq2d | |
24 | df-ov | |
|
25 | 23 24 | eqtr4di | |
26 | 20 25 | eqtrd | |
27 | xp1st | |
|
28 | 27 | adantr | |
29 | 28 | nn0red | |
30 | xp2nd | |
|
31 | 30 | adantr | |
32 | elnn0 | |
|
33 | 31 32 | sylib | |
34 | 33 | ord | |
35 | 13 34 | mt3d | |
36 | 35 | nnrpd | |
37 | modlt | |
|
38 | 29 36 37 | syl2anc | |
39 | 26 38 | eqbrtrd | |
40 | 39 | ex | |