Metamath Proof Explorer


Theorem eulerpartlemgf

Description: Lemma for eulerpart : Images under G have finite support. (Contributed by Thierry Arnoux, 29-Aug-2018)

Ref Expression
Hypotheses eulerpart.p P = f 0 | f -1 Fin k f k k = N
eulerpart.o O = g P | n g -1 ¬ 2 n
eulerpart.d D = g P | n g n 1
eulerpart.j J = z | ¬ 2 z
eulerpart.f F = x J , y 0 2 y x
eulerpart.h H = r 𝒫 0 Fin J | r supp Fin
eulerpart.m M = r H x y | x J y r x
eulerpart.r R = f | f -1 Fin
eulerpart.t T = f 0 | f -1 J
eulerpart.g G = o T R 𝟙 F M bits o J
Assertion eulerpartlemgf A T R G A -1 Fin

Proof

Step Hyp Ref Expression
1 eulerpart.p P = f 0 | f -1 Fin k f k k = N
2 eulerpart.o O = g P | n g -1 ¬ 2 n
3 eulerpart.d D = g P | n g n 1
4 eulerpart.j J = z | ¬ 2 z
5 eulerpart.f F = x J , y 0 2 y x
6 eulerpart.h H = r 𝒫 0 Fin J | r supp Fin
7 eulerpart.m M = r H x y | x J y r x
8 eulerpart.r R = f | f -1 Fin
9 eulerpart.t T = f 0 | f -1 J
10 eulerpart.g G = o T R 𝟙 F M bits o J
11 1 2 3 4 5 6 7 8 9 10 eulerpartlemgv A T R G A = 𝟙 F M bits A J
12 11 cnveqd A T R G A -1 = 𝟙 F M bits A J -1
13 12 imaeq1d A T R G A -1 1 = 𝟙 F M bits A J -1 1
14 nnex V
15 imassrn F M bits A J ran F
16 4 5 oddpwdc F : J × 0 1-1 onto
17 f1of F : J × 0 1-1 onto F : J × 0
18 frn F : J × 0 ran F
19 16 17 18 mp2b ran F
20 15 19 sstri F M bits A J
21 indpi1 V F M bits A J 𝟙 F M bits A J -1 1 = F M bits A J
22 14 20 21 mp2an 𝟙 F M bits A J -1 1 = F M bits A J
23 13 22 eqtrdi A T R G A -1 1 = F M bits A J
24 ffun F : J × 0 Fun F
25 16 17 24 mp2b Fun F
26 inss2 𝒫 J × 0 Fin Fin
27 1 2 3 4 5 6 7 8 9 10 eulerpartlemmf A T R bits A J H
28 1 2 3 4 5 6 7 eulerpartlem1 M : H 1-1 onto 𝒫 J × 0 Fin
29 f1of M : H 1-1 onto 𝒫 J × 0 Fin M : H 𝒫 J × 0 Fin
30 28 29 ax-mp M : H 𝒫 J × 0 Fin
31 30 ffvelrni bits A J H M bits A J 𝒫 J × 0 Fin
32 27 31 syl A T R M bits A J 𝒫 J × 0 Fin
33 26 32 sseldi A T R M bits A J Fin
34 imafi Fun F M bits A J Fin F M bits A J Fin
35 25 33 34 sylancr A T R F M bits A J Fin
36 23 35 eqeltrd A T R G A -1 1 Fin
37 1 2 3 4 5 6 7 8 9 10 eulerpartgbij G : T R 1-1 onto 0 1 R
38 f1of G : T R 1-1 onto 0 1 R G : T R 0 1 R
39 37 38 ax-mp G : T R 0 1 R
40 39 ffvelrni A T R G A 0 1 R
41 elin G A 0 1 R G A 0 1 G A R
42 41 simplbi G A 0 1 R G A 0 1
43 elmapi G A 0 1 G A : 0 1
44 40 42 43 3syl A T R G A : 0 1
45 44 ffund A T R Fun G A
46 ssv 0 V
47 dfn2 = 0 0
48 ssdif 0 V 0 0 V 0
49 47 48 eqsstrid 0 V V 0
50 46 49 ax-mp V 0
51 sspreima Fun G A V 0 G A -1 G A -1 V 0
52 45 50 51 sylancl A T R G A -1 G A -1 V 0
53 fvex G A V
54 0nn0 0 0
55 suppimacnv G A V 0 0 G A supp 0 = G A -1 V 0
56 53 54 55 mp2an G A supp 0 = G A -1 V 0
57 0ne1 0 1
58 difprsn1 0 1 0 1 0 = 1
59 57 58 ax-mp 0 1 0 = 1
60 59 eqcomi 1 = 0 1 0
61 60 ffs2 V 0 0 G A : 0 1 G A supp 0 = G A -1 1
62 14 54 61 mp3an12 G A : 0 1 G A supp 0 = G A -1 1
63 44 62 syl A T R G A supp 0 = G A -1 1
64 56 63 syl5eqr A T R G A -1 V 0 = G A -1 1
65 52 64 sseqtrd A T R G A -1 G A -1 1
66 ssfi G A -1 1 Fin G A -1 G A -1 1 G A -1 Fin
67 36 65 66 syl2anc A T R G A -1 Fin