Metamath Proof Explorer


Theorem evl1addd

Description: Polynomial evaluation builder for addition of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses evl1addd.q O=eval1R
evl1addd.p P=Poly1R
evl1addd.b B=BaseR
evl1addd.u U=BaseP
evl1addd.1 φRCRing
evl1addd.2 φYB
evl1addd.3 φMUOMY=V
evl1addd.4 φNUONY=W
evl1addd.g ˙=+P
evl1addd.a +˙=+R
Assertion evl1addd φM˙NUOM˙NY=V+˙W

Proof

Step Hyp Ref Expression
1 evl1addd.q O=eval1R
2 evl1addd.p P=Poly1R
3 evl1addd.b B=BaseR
4 evl1addd.u U=BaseP
5 evl1addd.1 φRCRing
6 evl1addd.2 φYB
7 evl1addd.3 φMUOMY=V
8 evl1addd.4 φNUONY=W
9 evl1addd.g ˙=+P
10 evl1addd.a +˙=+R
11 eqid R𝑠B=R𝑠B
12 1 2 11 3 evl1rhm RCRingOPRingHomR𝑠B
13 5 12 syl φOPRingHomR𝑠B
14 rhmghm OPRingHomR𝑠BOPGrpHomR𝑠B
15 13 14 syl φOPGrpHomR𝑠B
16 ghmgrp1 OPGrpHomR𝑠BPGrp
17 15 16 syl φPGrp
18 7 simpld φMU
19 8 simpld φNU
20 4 9 grpcl PGrpMUNUM˙NU
21 17 18 19 20 syl3anc φM˙NU
22 eqid +R𝑠B=+R𝑠B
23 4 9 22 ghmlin OPGrpHomR𝑠BMUNUOM˙N=OM+R𝑠BON
24 15 18 19 23 syl3anc φOM˙N=OM+R𝑠BON
25 eqid BaseR𝑠B=BaseR𝑠B
26 3 fvexi BV
27 26 a1i φBV
28 4 25 rhmf OPRingHomR𝑠BO:UBaseR𝑠B
29 13 28 syl φO:UBaseR𝑠B
30 29 18 ffvelcdmd φOMBaseR𝑠B
31 29 19 ffvelcdmd φONBaseR𝑠B
32 11 25 5 27 30 31 10 22 pwsplusgval φOM+R𝑠BON=OM+˙fON
33 24 32 eqtrd φOM˙N=OM+˙fON
34 33 fveq1d φOM˙NY=OM+˙fONY
35 11 3 25 5 27 30 pwselbas φOM:BB
36 35 ffnd φOMFnB
37 11 3 25 5 27 31 pwselbas φON:BB
38 37 ffnd φONFnB
39 fnfvof OMFnBONFnBBVYBOM+˙fONY=OMY+˙ONY
40 36 38 27 6 39 syl22anc φOM+˙fONY=OMY+˙ONY
41 7 simprd φOMY=V
42 8 simprd φONY=W
43 41 42 oveq12d φOMY+˙ONY=V+˙W
44 34 40 43 3eqtrd φOM˙NY=V+˙W
45 21 44 jca φM˙NUOM˙NY=V+˙W