Metamath Proof Explorer


Theorem evl1fval

Description: Value of the simple/same ring evaluation map. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses evl1fval.o O=eval1R
evl1fval.q Q=1𝑜evalR
evl1fval.b B=BaseR
Assertion evl1fval O=xBB1𝑜xyB1𝑜×yQ

Proof

Step Hyp Ref Expression
1 evl1fval.o O=eval1R
2 evl1fval.q Q=1𝑜evalR
3 evl1fval.b B=BaseR
4 fvexd r=RBaserV
5 id b=Baserb=Baser
6 fveq2 r=RBaser=BaseR
7 6 3 eqtr4di r=RBaser=B
8 5 7 sylan9eqr r=Rb=Baserb=B
9 8 oveq1d r=Rb=Baserb1𝑜=B1𝑜
10 8 9 oveq12d r=Rb=Baserbb1𝑜=BB1𝑜
11 8 mpteq1d r=Rb=Baseryb1𝑜×y=yB1𝑜×y
12 11 coeq2d r=Rb=Baserxyb1𝑜×y=xyB1𝑜×y
13 10 12 mpteq12dv r=Rb=Baserxbb1𝑜xyb1𝑜×y=xBB1𝑜xyB1𝑜×y
14 simpl r=Rb=Baserr=R
15 14 oveq2d r=Rb=Baser1𝑜evalr=1𝑜evalR
16 15 2 eqtr4di r=Rb=Baser1𝑜evalr=Q
17 13 16 coeq12d r=Rb=Baserxbb1𝑜xyb1𝑜×y1𝑜evalr=xBB1𝑜xyB1𝑜×yQ
18 4 17 csbied r=RBaser/bxbb1𝑜xyb1𝑜×y1𝑜evalr=xBB1𝑜xyB1𝑜×yQ
19 df-evl1 eval1=rVBaser/bxbb1𝑜xyb1𝑜×y1𝑜evalr
20 ovex BB1𝑜V
21 20 mptex xBB1𝑜xyB1𝑜×yV
22 2 ovexi QV
23 21 22 coex xBB1𝑜xyB1𝑜×yQV
24 18 19 23 fvmpt RVeval1R=xBB1𝑜xyB1𝑜×yQ
25 1 24 eqtrid RVO=xBB1𝑜xyB1𝑜×yQ
26 fvprc ¬RVeval1R=
27 1 26 eqtrid ¬RVO=
28 co02 xBB1𝑜xyB1𝑜×y=
29 27 28 eqtr4di ¬RVO=xBB1𝑜xyB1𝑜×y
30 df-evl eval=iV,rVievalSubrBaser
31 30 reldmmpo Reldomeval
32 31 ovprc2 ¬RV1𝑜evalR=
33 2 32 eqtrid ¬RVQ=
34 33 coeq2d ¬RVxBB1𝑜xyB1𝑜×yQ=xBB1𝑜xyB1𝑜×y
35 29 34 eqtr4d ¬RVO=xBB1𝑜xyB1𝑜×yQ
36 25 35 pm2.61i O=xBB1𝑜xyB1𝑜×yQ