Metamath Proof Explorer


Theorem evls1muld

Description: Univariate polynomial evaluation of a product of polynomials. (Contributed by Thierry Arnoux, 24-Jan-2025)

Ref Expression
Hypotheses ressply1evl.q Q=SevalSub1R
ressply1evl.k K=BaseS
ressply1evl.w W=Poly1U
ressply1evl.u U=S𝑠R
ressply1evl.b B=BaseW
evls1muld.1 ×˙=W
evls1muld.2 ·˙=S
evls1muld.s φSCRing
evls1muld.r φRSubRingS
evls1muld.m φMB
evls1muld.n φNB
evls1muld.c φCK
Assertion evls1muld φQM×˙NC=QMC·˙QNC

Proof

Step Hyp Ref Expression
1 ressply1evl.q Q=SevalSub1R
2 ressply1evl.k K=BaseS
3 ressply1evl.w W=Poly1U
4 ressply1evl.u U=S𝑠R
5 ressply1evl.b B=BaseW
6 evls1muld.1 ×˙=W
7 evls1muld.2 ·˙=S
8 evls1muld.s φSCRing
9 evls1muld.r φRSubRingS
10 evls1muld.m φMB
11 evls1muld.n φNB
12 evls1muld.c φCK
13 id φφ
14 eqid Poly1S=Poly1S
15 eqid Poly1S𝑠B=Poly1S𝑠B
16 14 4 3 5 9 15 ressply1mul φMBNBMWN=MPoly1S𝑠BN
17 13 10 11 16 syl12anc φMWN=MPoly1S𝑠BN
18 6 oveqi M×˙N=MWN
19 5 fvexi BV
20 eqid Poly1S=Poly1S
21 15 20 ressmulr BVPoly1S=Poly1S𝑠B
22 19 21 ax-mp Poly1S=Poly1S𝑠B
23 22 oveqi MPoly1SN=MPoly1S𝑠BN
24 17 18 23 3eqtr4g φM×˙N=MPoly1SN
25 24 fveq2d φeval1SM×˙N=eval1SMPoly1SN
26 25 fveq1d φeval1SM×˙NC=eval1SMPoly1SNC
27 eqid eval1S=eval1S
28 1 2 3 4 5 27 8 9 ressply1evl φQ=eval1SB
29 28 fveq1d φQM×˙N=eval1SBM×˙N
30 4 subrgring RSubRingSURing
31 3 ply1ring URingWRing
32 9 30 31 3syl φWRing
33 5 6 32 10 11 ringcld φM×˙NB
34 33 fvresd φeval1SBM×˙N=eval1SM×˙N
35 29 34 eqtr2d φeval1SM×˙N=QM×˙N
36 35 fveq1d φeval1SM×˙NC=QM×˙NC
37 eqid BasePoly1S=BasePoly1S
38 eqid PwSer1U=PwSer1U
39 eqid BasePwSer1U=BasePwSer1U
40 14 4 3 5 9 38 39 37 ressply1bas2 φB=BasePwSer1UBasePoly1S
41 inss2 BasePwSer1UBasePoly1SBasePoly1S
42 40 41 eqsstrdi φBBasePoly1S
43 42 10 sseldd φMBasePoly1S
44 28 fveq1d φQM=eval1SBM
45 10 fvresd φeval1SBM=eval1SM
46 44 45 eqtr2d φeval1SM=QM
47 46 fveq1d φeval1SMC=QMC
48 43 47 jca φMBasePoly1Seval1SMC=QMC
49 42 11 sseldd φNBasePoly1S
50 28 fveq1d φQN=eval1SBN
51 11 fvresd φeval1SBN=eval1SN
52 50 51 eqtr2d φeval1SN=QN
53 52 fveq1d φeval1SNC=QNC
54 49 53 jca φNBasePoly1Seval1SNC=QNC
55 27 14 2 37 8 12 48 54 20 7 evl1muld φMPoly1SNBasePoly1Seval1SMPoly1SNC=QMC·˙QNC
56 55 simprd φeval1SMPoly1SNC=QMC·˙QNC
57 26 36 56 3eqtr3d φQM×˙NC=QMC·˙QNC