Description: Univariate polynomial evaluation of a product of polynomials. (Contributed by Thierry Arnoux, 24-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ressply1evl.q | |
|
ressply1evl.k | |
||
ressply1evl.w | |
||
ressply1evl.u | |
||
ressply1evl.b | |
||
evls1muld.1 | |
||
evls1muld.2 | |
||
evls1muld.s | |
||
evls1muld.r | |
||
evls1muld.m | |
||
evls1muld.n | |
||
evls1muld.c | |
||
Assertion | evls1muld | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressply1evl.q | |
|
2 | ressply1evl.k | |
|
3 | ressply1evl.w | |
|
4 | ressply1evl.u | |
|
5 | ressply1evl.b | |
|
6 | evls1muld.1 | |
|
7 | evls1muld.2 | |
|
8 | evls1muld.s | |
|
9 | evls1muld.r | |
|
10 | evls1muld.m | |
|
11 | evls1muld.n | |
|
12 | evls1muld.c | |
|
13 | id | |
|
14 | eqid | |
|
15 | eqid | |
|
16 | 14 4 3 5 9 15 | ressply1mul | |
17 | 13 10 11 16 | syl12anc | |
18 | 6 | oveqi | |
19 | 5 | fvexi | |
20 | eqid | |
|
21 | 15 20 | ressmulr | |
22 | 19 21 | ax-mp | |
23 | 22 | oveqi | |
24 | 17 18 23 | 3eqtr4g | |
25 | 24 | fveq2d | |
26 | 25 | fveq1d | |
27 | eqid | |
|
28 | 1 2 3 4 5 27 8 9 | ressply1evl | |
29 | 28 | fveq1d | |
30 | 4 | subrgring | |
31 | 3 | ply1ring | |
32 | 9 30 31 | 3syl | |
33 | 5 6 32 10 11 | ringcld | |
34 | 33 | fvresd | |
35 | 29 34 | eqtr2d | |
36 | 35 | fveq1d | |
37 | eqid | |
|
38 | eqid | |
|
39 | eqid | |
|
40 | 14 4 3 5 9 38 39 37 | ressply1bas2 | |
41 | inss2 | |
|
42 | 40 41 | eqsstrdi | |
43 | 42 10 | sseldd | |
44 | 28 | fveq1d | |
45 | 10 | fvresd | |
46 | 44 45 | eqtr2d | |
47 | 46 | fveq1d | |
48 | 43 47 | jca | |
49 | 42 11 | sseldd | |
50 | 28 | fveq1d | |
51 | 11 | fvresd | |
52 | 50 51 | eqtr2d | |
53 | 52 | fveq1d | |
54 | 49 53 | jca | |
55 | 27 14 2 37 8 12 48 54 20 7 | evl1muld | |
56 | 55 | simprd | |
57 | 26 36 56 | 3eqtr3d | |