Metamath Proof Explorer


Theorem ex-sategoelel

Description: Example of a valuation of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023)

Ref Expression
Hypotheses sategoelfvb.s E=MSatA𝑔B
ex-sategoelel.s S=xωifx=AZifx=B𝒫Z
Assertion ex-sategoelel MWUniZMAωBωABSE

Proof

Step Hyp Ref Expression
1 sategoelfvb.s E=MSatA𝑔B
2 ex-sategoelel.s S=xωifx=AZifx=B𝒫Z
3 simpr MWUniZMZM
4 simpl MWUniZMMWUni
5 4 3 wunpw MWUniZM𝒫ZM
6 4 wun0 MWUniZMM
7 5 6 ifcld MWUniZMifx=B𝒫ZM
8 3 7 ifcld MWUniZMifx=AZifx=B𝒫ZM
9 8 adantr MWUniZMAωBωABifx=AZifx=B𝒫ZM
10 9 adantr MWUniZMAωBωABxωifx=AZifx=B𝒫ZM
11 10 2 fmptd MWUniZMAωBωABS:ωM
12 4 adantr MWUniZMAωBωABMWUni
13 omex ωV
14 13 a1i MWUniZMAωBωABωV
15 12 14 elmapd MWUniZMAωBωABSMωS:ωM
16 11 15 mpbird MWUniZMAωBωABSMω
17 pwidg ZMZ𝒫Z
18 17 adantl MWUniZMZ𝒫Z
19 18 adantr MWUniZMAωBωABZ𝒫Z
20 2 a1i MWUniZMAωBωABS=xωifx=AZifx=B𝒫Z
21 iftrue x=Aifx=AZifx=B𝒫Z=Z
22 21 adantl MWUniZMAωBωABx=Aifx=AZifx=B𝒫Z=Z
23 simpr1 MWUniZMAωBωABAω
24 3 adantr MWUniZMAωBωABZM
25 20 22 23 24 fvmptd MWUniZMAωBωABSA=Z
26 eqeq1 x=Bx=AB=A
27 eqeq1 x=Bx=BB=B
28 27 ifbid x=Bifx=B𝒫Z=ifB=B𝒫Z
29 26 28 ifbieq2d x=Bifx=AZifx=B𝒫Z=ifB=AZifB=B𝒫Z
30 necom ABBA
31 ifnefalse BAifB=AZifB=B𝒫Z=ifB=B𝒫Z
32 30 31 sylbi ABifB=AZifB=B𝒫Z=ifB=B𝒫Z
33 32 3ad2ant3 AωBωABifB=AZifB=B𝒫Z=ifB=B𝒫Z
34 33 adantl MWUniZMAωBωABifB=AZifB=B𝒫Z=ifB=B𝒫Z
35 29 34 sylan9eqr MWUniZMAωBωABx=Bifx=AZifx=B𝒫Z=ifB=B𝒫Z
36 simpr2 MWUniZMAωBωABBω
37 pwexg ZM𝒫ZV
38 37 adantl MWUniZM𝒫ZV
39 0ex V
40 39 a1i MWUniZMV
41 38 40 ifcld MWUniZMifB=B𝒫ZV
42 41 adantr MWUniZMAωBωABifB=B𝒫ZV
43 20 35 36 42 fvmptd MWUniZMAωBωABSB=ifB=B𝒫Z
44 eqid B=B
45 44 iftruei ifB=B𝒫Z=𝒫Z
46 43 45 eqtrdi MWUniZMAωBωABSB=𝒫Z
47 19 25 46 3eltr4d MWUniZMAωBωABSASB
48 3simpa AωBωABAωBω
49 1 sategoelfvb MWUniAωBωSESMωSASB
50 4 48 49 syl2an MWUniZMAωBωABSESMωSASB
51 16 47 50 mpbir2and MWUniZMAωBωABSE