Metamath Proof Explorer


Theorem exidresid

Description: The restriction of a binary operation with identity to a subset containing the identity has the same identity element. (Contributed by Jeff Madsen, 8-Jun-2010) (Revised by Mario Carneiro, 23-Dec-2013)

Ref Expression
Hypotheses exidres.1 X=ranG
exidres.2 U=GIdG
exidres.3 H=GY×Y
Assertion exidresid GMagmaExIdYXUYHMagmaGIdH=U

Proof

Step Hyp Ref Expression
1 exidres.1 X=ranG
2 exidres.2 U=GIdG
3 exidres.3 H=GY×Y
4 resexg GMagmaExIdGY×YV
5 3 4 eqeltrid GMagmaExIdHV
6 eqid ranH=ranH
7 6 gidval HVGIdH=ιuranH|xranHuHx=xxHu=x
8 5 7 syl GMagmaExIdGIdH=ιuranH|xranHuHx=xxHu=x
9 8 3ad2ant1 GMagmaExIdYXUYGIdH=ιuranH|xranHuHx=xxHu=x
10 9 adantr GMagmaExIdYXUYHMagmaGIdH=ιuranH|xranHuHx=xxHu=x
11 1 2 3 exidreslem GMagmaExIdYXUYUdomdomHxdomdomHUHx=xxHU=x
12 11 simprd GMagmaExIdYXUYxdomdomHUHx=xxHU=x
13 12 adantr GMagmaExIdYXUYHMagmaxdomdomHUHx=xxHU=x
14 1 2 3 exidres GMagmaExIdYXUYHExId
15 elin HMagmaExIdHMagmaHExId
16 rngopidOLD HMagmaExIdranH=domdomH
17 15 16 sylbir HMagmaHExIdranH=domdomH
18 17 ancoms HExIdHMagmaranH=domdomH
19 14 18 sylan GMagmaExIdYXUYHMagmaranH=domdomH
20 19 raleqdv GMagmaExIdYXUYHMagmaxranHUHx=xxHU=xxdomdomHUHx=xxHU=x
21 13 20 mpbird GMagmaExIdYXUYHMagmaxranHUHx=xxHU=x
22 11 simpld GMagmaExIdYXUYUdomdomH
23 22 adantr GMagmaExIdYXUYHMagmaUdomdomH
24 23 19 eleqtrrd GMagmaExIdYXUYHMagmaUranH
25 6 exidu1 HMagmaExId∃!uranHxranHuHx=xxHu=x
26 15 25 sylbir HMagmaHExId∃!uranHxranHuHx=xxHu=x
27 26 ancoms HExIdHMagma∃!uranHxranHuHx=xxHu=x
28 14 27 sylan GMagmaExIdYXUYHMagma∃!uranHxranHuHx=xxHu=x
29 oveq1 u=UuHx=UHx
30 29 eqeq1d u=UuHx=xUHx=x
31 30 ovanraleqv u=UxranHuHx=xxHu=xxranHUHx=xxHU=x
32 31 riota2 UranH∃!uranHxranHuHx=xxHu=xxranHUHx=xxHU=xιuranH|xranHuHx=xxHu=x=U
33 24 28 32 syl2anc GMagmaExIdYXUYHMagmaxranHUHx=xxHU=xιuranH|xranHuHx=xxHu=x=U
34 21 33 mpbid GMagmaExIdYXUYHMagmaιuranH|xranHuHx=xxHu=x=U
35 10 34 eqtrd GMagmaExIdYXUYHMagmaGIdH=U