Description: Lemma for exidres and exidresid . (Contributed by Jeff Madsen, 8-Jun-2010) (Revised by Mario Carneiro, 23-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | exidres.1 | |
|
exidres.2 | |
||
exidres.3 | |
||
Assertion | exidreslem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exidres.1 | |
|
2 | exidres.2 | |
|
3 | exidres.3 | |
|
4 | 3 | dmeqi | |
5 | xpss12 | |
|
6 | 5 | anidms | |
7 | 1 | opidon2OLD | |
8 | fof | |
|
9 | fdm | |
|
10 | 7 8 9 | 3syl | |
11 | 10 | sseq2d | |
12 | 6 11 | imbitrrid | |
13 | 12 | imp | |
14 | ssdmres | |
|
15 | 13 14 | sylib | |
16 | 4 15 | eqtrid | |
17 | 16 | dmeqd | |
18 | dmxpid | |
|
19 | 17 18 | eqtrdi | |
20 | 19 | eleq2d | |
21 | 20 | biimp3ar | |
22 | ssel2 | |
|
23 | 1 2 | cmpidelt | |
24 | 22 23 | sylan2 | |
25 | 24 | anassrs | |
26 | 25 | adantrl | |
27 | 3 | oveqi | |
28 | ovres | |
|
29 | 27 28 | eqtrid | |
30 | 29 | eqeq1d | |
31 | 3 | oveqi | |
32 | ovres | |
|
33 | 31 32 | eqtrid | |
34 | 33 | ancoms | |
35 | 34 | eqeq1d | |
36 | 30 35 | anbi12d | |
37 | 36 | adantl | |
38 | 26 37 | mpbird | |
39 | 38 | anassrs | |
40 | 39 | ralrimiva | |
41 | 40 | 3impa | |
42 | 13 | 3adant3 | |
43 | 42 14 | sylib | |
44 | 4 43 | eqtrid | |
45 | 44 | dmeqd | |
46 | 45 18 | eqtrdi | |
47 | 46 | raleqdv | |
48 | 41 47 | mpbird | |
49 | 21 48 | jca | |