Metamath Proof Explorer


Theorem exidreslem

Description: Lemma for exidres and exidresid . (Contributed by Jeff Madsen, 8-Jun-2010) (Revised by Mario Carneiro, 23-Dec-2013)

Ref Expression
Hypotheses exidres.1 X=ranG
exidres.2 U=GIdG
exidres.3 H=GY×Y
Assertion exidreslem GMagmaExIdYXUYUdomdomHxdomdomHUHx=xxHU=x

Proof

Step Hyp Ref Expression
1 exidres.1 X=ranG
2 exidres.2 U=GIdG
3 exidres.3 H=GY×Y
4 3 dmeqi domH=domGY×Y
5 xpss12 YXYXY×YX×X
6 5 anidms YXY×YX×X
7 1 opidon2OLD GMagmaExIdG:X×XontoX
8 fof G:X×XontoXG:X×XX
9 fdm G:X×XXdomG=X×X
10 7 8 9 3syl GMagmaExIddomG=X×X
11 10 sseq2d GMagmaExIdY×YdomGY×YX×X
12 6 11 imbitrrid GMagmaExIdYXY×YdomG
13 12 imp GMagmaExIdYXY×YdomG
14 ssdmres Y×YdomGdomGY×Y=Y×Y
15 13 14 sylib GMagmaExIdYXdomGY×Y=Y×Y
16 4 15 eqtrid GMagmaExIdYXdomH=Y×Y
17 16 dmeqd GMagmaExIdYXdomdomH=domY×Y
18 dmxpid domY×Y=Y
19 17 18 eqtrdi GMagmaExIdYXdomdomH=Y
20 19 eleq2d GMagmaExIdYXUdomdomHUY
21 20 biimp3ar GMagmaExIdYXUYUdomdomH
22 ssel2 YXxYxX
23 1 2 cmpidelt GMagmaExIdxXUGx=xxGU=x
24 22 23 sylan2 GMagmaExIdYXxYUGx=xxGU=x
25 24 anassrs GMagmaExIdYXxYUGx=xxGU=x
26 25 adantrl GMagmaExIdYXUYxYUGx=xxGU=x
27 3 oveqi UHx=UGY×Yx
28 ovres UYxYUGY×Yx=UGx
29 27 28 eqtrid UYxYUHx=UGx
30 29 eqeq1d UYxYUHx=xUGx=x
31 3 oveqi xHU=xGY×YU
32 ovres xYUYxGY×YU=xGU
33 31 32 eqtrid xYUYxHU=xGU
34 33 ancoms UYxYxHU=xGU
35 34 eqeq1d UYxYxHU=xxGU=x
36 30 35 anbi12d UYxYUHx=xxHU=xUGx=xxGU=x
37 36 adantl GMagmaExIdYXUYxYUHx=xxHU=xUGx=xxGU=x
38 26 37 mpbird GMagmaExIdYXUYxYUHx=xxHU=x
39 38 anassrs GMagmaExIdYXUYxYUHx=xxHU=x
40 39 ralrimiva GMagmaExIdYXUYxYUHx=xxHU=x
41 40 3impa GMagmaExIdYXUYxYUHx=xxHU=x
42 13 3adant3 GMagmaExIdYXUYY×YdomG
43 42 14 sylib GMagmaExIdYXUYdomGY×Y=Y×Y
44 4 43 eqtrid GMagmaExIdYXUYdomH=Y×Y
45 44 dmeqd GMagmaExIdYXUYdomdomH=domY×Y
46 45 18 eqtrdi GMagmaExIdYXUYdomdomH=Y
47 46 raleqdv GMagmaExIdYXUYxdomdomHUHx=xxHU=xxYUHx=xxHU=x
48 41 47 mpbird GMagmaExIdYXUYxdomdomHUHx=xxHU=x
49 21 48 jca GMagmaExIdYXUYUdomdomHxdomdomHUHx=xxHU=x