Metamath Proof Explorer


Theorem expubnd

Description: An upper bound on A ^ N when 2 <_ A . (Contributed by NM, 19-Dec-2005)

Ref Expression
Assertion expubnd AN02AAN2NA1N

Proof

Step Hyp Ref Expression
1 simp1 AN02AA
2 2re 2
3 peano2rem AA1
4 remulcl 2A12A1
5 2 3 4 sylancr A2A1
6 5 3ad2ant1 AN02A2A1
7 simp2 AN02AN0
8 0le2 02
9 0re 0
10 letr 02A022A0A
11 9 2 10 mp3an12 A022A0A
12 8 11 mpani A2A0A
13 12 imp A2A0A
14 resubcl A2A2
15 2 14 mpan2 AA2
16 leadd2 2AA22AA-2+2A-2+A
17 2 16 mp3an1 AA22AA-2+2A-2+A
18 15 17 mpdan A2AA-2+2A-2+A
19 18 biimpa A2AA-2+2A-2+A
20 recn AA
21 2cn 2
22 npcan A2A-2+2=A
23 20 21 22 sylancl AA-2+2=A
24 23 adantr A2AA-2+2=A
25 ax-1cn 1
26 subdi 2A12A1=2A21
27 21 25 26 mp3an13 A2A1=2A21
28 2times A2A=A+A
29 2t1e2 21=2
30 29 a1i A21=2
31 28 30 oveq12d A2A21=A+A-2
32 addsub AA2A+A-2=A-2+A
33 21 32 mp3an3 AAA+A-2=A-2+A
34 33 anidms AA+A-2=A-2+A
35 27 31 34 3eqtrrd AA-2+A=2A1
36 20 35 syl AA-2+A=2A1
37 36 adantr A2AA-2+A=2A1
38 19 24 37 3brtr3d A2AA2A1
39 13 38 jca A2A0AA2A1
40 39 3adant2 AN02A0AA2A1
41 leexp1a A2A1N00AA2A1AN2A1N
42 1 6 7 40 41 syl31anc AN02AAN2A1N
43 3 recnd AA1
44 mulexp 2A1N02A1N=2NA1N
45 21 44 mp3an1 A1N02A1N=2NA1N
46 43 45 sylan AN02A1N=2NA1N
47 46 3adant3 AN02A2A1N=2NA1N
48 42 47 breqtrd AN02AAN2NA1N