Description: An upper bound on A ^ N when 2 <_ A . (Contributed by NM, 19-Dec-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | expubnd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | |
|
2 | 2re | |
|
3 | peano2rem | |
|
4 | remulcl | |
|
5 | 2 3 4 | sylancr | |
6 | 5 | 3ad2ant1 | |
7 | simp2 | |
|
8 | 0le2 | |
|
9 | 0re | |
|
10 | letr | |
|
11 | 9 2 10 | mp3an12 | |
12 | 8 11 | mpani | |
13 | 12 | imp | |
14 | resubcl | |
|
15 | 2 14 | mpan2 | |
16 | leadd2 | |
|
17 | 2 16 | mp3an1 | |
18 | 15 17 | mpdan | |
19 | 18 | biimpa | |
20 | recn | |
|
21 | 2cn | |
|
22 | npcan | |
|
23 | 20 21 22 | sylancl | |
24 | 23 | adantr | |
25 | ax-1cn | |
|
26 | subdi | |
|
27 | 21 25 26 | mp3an13 | |
28 | 2times | |
|
29 | 2t1e2 | |
|
30 | 29 | a1i | |
31 | 28 30 | oveq12d | |
32 | addsub | |
|
33 | 21 32 | mp3an3 | |
34 | 33 | anidms | |
35 | 27 31 34 | 3eqtrrd | |
36 | 20 35 | syl | |
37 | 36 | adantr | |
38 | 19 24 37 | 3brtr3d | |
39 | 13 38 | jca | |
40 | 39 | 3adant2 | |
41 | leexp1a | |
|
42 | 1 6 7 40 41 | syl31anc | |
43 | 3 | recnd | |
44 | mulexp | |
|
45 | 21 44 | mp3an1 | |
46 | 43 45 | sylan | |
47 | 46 | 3adant3 | |
48 | 42 47 | breqtrd | |