Description: Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010) (Revised by Mario Carneiro, 27-Feb-2014) Avoid ax-pow . (Revised by BTernaryTau, 4-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | f1finf1o | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | |
|
2 | f1f | |
|
3 | 2 | adantl | |
4 | 3 | ffnd | |
5 | simpll | |
|
6 | 3 | frnd | |
7 | df-pss | |
|
8 | 7 | baib | |
9 | 6 8 | syl | |
10 | php3 | |
|
11 | 10 | ex | |
12 | 11 | ad2antlr | |
13 | enfii | |
|
14 | 13 | ancoms | |
15 | f1f1orn | |
|
16 | f1oenfi | |
|
17 | 14 15 16 | syl2an | |
18 | endom | |
|
19 | domsdomtrfi | |
|
20 | 18 19 | syl3an2 | |
21 | 20 | 3expia | |
22 | 14 17 21 | syl2an2r | |
23 | 12 22 | syld | |
24 | sdomnen | |
|
25 | 23 24 | syl6 | |
26 | 9 25 | sylbird | |
27 | 26 | necon4ad | |
28 | 5 27 | mpd | |
29 | df-fo | |
|
30 | 4 28 29 | sylanbrc | |
31 | df-f1o | |
|
32 | 1 30 31 | sylanbrc | |
33 | 32 | ex | |
34 | f1of1 | |
|
35 | 33 34 | impbid1 | |