Metamath Proof Explorer


Theorem f1finf1o

Description: Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010) (Revised by Mario Carneiro, 27-Feb-2014) Avoid ax-pow . (Revised by BTernaryTau, 4-Jan-2025)

Ref Expression
Assertion f1finf1o ABBFinF:A1-1BF:A1-1 ontoB

Proof

Step Hyp Ref Expression
1 simpr ABBFinF:A1-1BF:A1-1B
2 f1f F:A1-1BF:AB
3 2 adantl ABBFinF:A1-1BF:AB
4 3 ffnd ABBFinF:A1-1BFFnA
5 simpll ABBFinF:A1-1BAB
6 3 frnd ABBFinF:A1-1BranFB
7 df-pss ranFBranFBranFB
8 7 baib ranFBranFBranFB
9 6 8 syl ABBFinF:A1-1BranFBranFB
10 php3 BFinranFBranFB
11 10 ex BFinranFBranFB
12 11 ad2antlr ABBFinF:A1-1BranFBranFB
13 enfii BFinABAFin
14 13 ancoms ABBFinAFin
15 f1f1orn F:A1-1BF:A1-1 ontoranF
16 f1oenfi AFinF:A1-1 ontoranFAranF
17 14 15 16 syl2an ABBFinF:A1-1BAranF
18 endom AranFAranF
19 domsdomtrfi AFinAranFranFBAB
20 18 19 syl3an2 AFinAranFranFBAB
21 20 3expia AFinAranFranFBAB
22 14 17 21 syl2an2r ABBFinF:A1-1BranFBAB
23 12 22 syld ABBFinF:A1-1BranFBAB
24 sdomnen AB¬AB
25 23 24 syl6 ABBFinF:A1-1BranFB¬AB
26 9 25 sylbird ABBFinF:A1-1BranFB¬AB
27 26 necon4ad ABBFinF:A1-1BABranF=B
28 5 27 mpd ABBFinF:A1-1BranF=B
29 df-fo F:AontoBFFnAranF=B
30 4 28 29 sylanbrc ABBFinF:A1-1BF:AontoB
31 df-f1o F:A1-1 ontoBF:A1-1BF:AontoB
32 1 30 31 sylanbrc ABBFinF:A1-1BF:A1-1 ontoB
33 32 ex ABBFinF:A1-1BF:A1-1 ontoB
34 f1of1 F:A1-1 ontoBF:A1-1B
35 33 34 impbid1 ABBFinF:A1-1BF:A1-1 ontoB