| Step | Hyp | Ref | Expression | 
						
							| 1 |  | excxor |  | 
						
							| 2 |  | coass |  | 
						
							| 3 |  | f1ococnv1 |  | 
						
							| 4 | 3 | coeq1d |  | 
						
							| 5 |  | f1of |  | 
						
							| 6 |  | fcoi2 |  | 
						
							| 7 | 5 6 | syl |  | 
						
							| 8 | 4 7 | sylan9eq |  | 
						
							| 9 | 2 8 | eqtr3id |  | 
						
							| 10 | 9 | difeq1d |  | 
						
							| 11 | 10 | dmeqd |  | 
						
							| 12 | 11 | adantr |  | 
						
							| 13 |  | mvdco |  | 
						
							| 14 |  | f1omvdcnv |  | 
						
							| 15 | 14 | ad2antrr |  | 
						
							| 16 |  | simprl |  | 
						
							| 17 | 15 16 | eqsstrd |  | 
						
							| 18 |  | simprr |  | 
						
							| 19 | 17 18 | unssd |  | 
						
							| 20 | 13 19 | sstrid |  | 
						
							| 21 | 12 20 | eqsstrrd |  | 
						
							| 22 | 21 | expr |  | 
						
							| 23 | 22 | con3d |  | 
						
							| 24 | 23 | expimpd |  | 
						
							| 25 |  | coass |  | 
						
							| 26 |  | f1ococnv2 |  | 
						
							| 27 | 26 | coeq2d |  | 
						
							| 28 |  | f1of |  | 
						
							| 29 |  | fcoi1 |  | 
						
							| 30 | 28 29 | syl |  | 
						
							| 31 | 27 30 | sylan9eqr |  | 
						
							| 32 | 25 31 | eqtrid |  | 
						
							| 33 | 32 | difeq1d |  | 
						
							| 34 | 33 | dmeqd |  | 
						
							| 35 | 34 | adantr |  | 
						
							| 36 |  | mvdco |  | 
						
							| 37 |  | simprr |  | 
						
							| 38 |  | f1omvdcnv |  | 
						
							| 39 | 38 | ad2antlr |  | 
						
							| 40 |  | simprl |  | 
						
							| 41 | 39 40 | eqsstrd |  | 
						
							| 42 | 37 41 | unssd |  | 
						
							| 43 | 36 42 | sstrid |  | 
						
							| 44 | 35 43 | eqsstrrd |  | 
						
							| 45 | 44 | expr |  | 
						
							| 46 | 45 | con3d |  | 
						
							| 47 | 46 | expimpd |  | 
						
							| 48 | 47 | ancomsd |  | 
						
							| 49 | 24 48 | jaod |  | 
						
							| 50 | 1 49 | biimtrid |  | 
						
							| 51 | 50 | 3impia |  |