Metamath Proof Explorer


Theorem f1otrspeq

Description: A transposition is characterized by the points it moves. (Contributed by Stefan O'Rear, 22-Aug-2015)

Ref Expression
Assertion f1otrspeq F : A 1-1 onto A G : A 1-1 onto A dom F I 2 𝑜 dom G I = dom F I F = G

Proof

Step Hyp Ref Expression
1 f1ofn F : A 1-1 onto A F Fn A
2 1 ad2antrr F : A 1-1 onto A G : A 1-1 onto A dom F I 2 𝑜 dom G I = dom F I F Fn A
3 f1ofn G : A 1-1 onto A G Fn A
4 3 ad2antlr F : A 1-1 onto A G : A 1-1 onto A dom F I 2 𝑜 dom G I = dom F I G Fn A
5 1onn 1 𝑜 ω
6 simplrr F : A 1-1 onto A G : A 1-1 onto A dom F I 2 𝑜 dom G I = dom F I x dom G I dom G I = dom F I
7 simplrl F : A 1-1 onto A G : A 1-1 onto A dom F I 2 𝑜 dom G I = dom F I x dom G I dom F I 2 𝑜
8 df-2o 2 𝑜 = suc 1 𝑜
9 7 8 breqtrdi F : A 1-1 onto A G : A 1-1 onto A dom F I 2 𝑜 dom G I = dom F I x dom G I dom F I suc 1 𝑜
10 6 9 eqbrtrd F : A 1-1 onto A G : A 1-1 onto A dom F I 2 𝑜 dom G I = dom F I x dom G I dom G I suc 1 𝑜
11 simpr F : A 1-1 onto A G : A 1-1 onto A dom F I 2 𝑜 dom G I = dom F I x dom G I x dom G I
12 dif1en 1 𝑜 ω dom G I suc 1 𝑜 x dom G I dom G I x 1 𝑜
13 5 10 11 12 mp3an2i F : A 1-1 onto A G : A 1-1 onto A dom F I 2 𝑜 dom G I = dom F I x dom G I dom G I x 1 𝑜
14 euen1b dom G I x 1 𝑜 ∃! y y dom G I x
15 eumo ∃! y y dom G I x * y y dom G I x
16 14 15 sylbi dom G I x 1 𝑜 * y y dom G I x
17 13 16 syl F : A 1-1 onto A G : A 1-1 onto A dom F I 2 𝑜 dom G I = dom F I x dom G I * y y dom G I x
18 f1omvdmvd F : A 1-1 onto A x dom F I F x dom F I x
19 18 ex F : A 1-1 onto A x dom F I F x dom F I x
20 19 ad2antrr F : A 1-1 onto A G : A 1-1 onto A dom F I 2 𝑜 dom G I = dom F I x dom F I F x dom F I x
21 eleq2 dom G I = dom F I x dom G I x dom F I
22 21 ad2antll F : A 1-1 onto A G : A 1-1 onto A dom F I 2 𝑜 dom G I = dom F I x dom G I x dom F I
23 difeq1 dom G I = dom F I dom G I x = dom F I x
24 23 eleq2d dom G I = dom F I F x dom G I x F x dom F I x
25 24 ad2antll F : A 1-1 onto A G : A 1-1 onto A dom F I 2 𝑜 dom G I = dom F I F x dom G I x F x dom F I x
26 20 22 25 3imtr4d F : A 1-1 onto A G : A 1-1 onto A dom F I 2 𝑜 dom G I = dom F I x dom G I F x dom G I x
27 26 imp F : A 1-1 onto A G : A 1-1 onto A dom F I 2 𝑜 dom G I = dom F I x dom G I F x dom G I x
28 f1omvdmvd G : A 1-1 onto A x dom G I G x dom G I x
29 28 ad4ant24 F : A 1-1 onto A G : A 1-1 onto A dom F I 2 𝑜 dom G I = dom F I x dom G I G x dom G I x
30 fvex F x V
31 fvex G x V
32 30 31 pm3.2i F x V G x V
33 eleq1 y = F x y dom G I x F x dom G I x
34 eleq1 y = G x y dom G I x G x dom G I x
35 33 34 moi F x V G x V * y y dom G I x F x dom G I x G x dom G I x F x = G x
36 32 35 mp3an1 * y y dom G I x F x dom G I x G x dom G I x F x = G x
37 17 27 29 36 syl12anc F : A 1-1 onto A G : A 1-1 onto A dom F I 2 𝑜 dom G I = dom F I x dom G I F x = G x
38 37 adantlr F : A 1-1 onto A G : A 1-1 onto A dom F I 2 𝑜 dom G I = dom F I x A x dom G I F x = G x
39 simplrr F : A 1-1 onto A G : A 1-1 onto A dom F I 2 𝑜 dom G I = dom F I x A dom G I = dom F I
40 39 eleq2d F : A 1-1 onto A G : A 1-1 onto A dom F I 2 𝑜 dom G I = dom F I x A x dom G I x dom F I
41 fnelnfp F Fn A x A x dom F I F x x
42 2 41 sylan F : A 1-1 onto A G : A 1-1 onto A dom F I 2 𝑜 dom G I = dom F I x A x dom F I F x x
43 40 42 bitrd F : A 1-1 onto A G : A 1-1 onto A dom F I 2 𝑜 dom G I = dom F I x A x dom G I F x x
44 43 necon2bbid F : A 1-1 onto A G : A 1-1 onto A dom F I 2 𝑜 dom G I = dom F I x A F x = x ¬ x dom G I
45 44 biimpar F : A 1-1 onto A G : A 1-1 onto A dom F I 2 𝑜 dom G I = dom F I x A ¬ x dom G I F x = x
46 fnelnfp G Fn A x A x dom G I G x x
47 4 46 sylan F : A 1-1 onto A G : A 1-1 onto A dom F I 2 𝑜 dom G I = dom F I x A x dom G I G x x
48 47 necon2bbid F : A 1-1 onto A G : A 1-1 onto A dom F I 2 𝑜 dom G I = dom F I x A G x = x ¬ x dom G I
49 48 biimpar F : A 1-1 onto A G : A 1-1 onto A dom F I 2 𝑜 dom G I = dom F I x A ¬ x dom G I G x = x
50 45 49 eqtr4d F : A 1-1 onto A G : A 1-1 onto A dom F I 2 𝑜 dom G I = dom F I x A ¬ x dom G I F x = G x
51 38 50 pm2.61dan F : A 1-1 onto A G : A 1-1 onto A dom F I 2 𝑜 dom G I = dom F I x A F x = G x
52 2 4 51 eqfnfvd F : A 1-1 onto A G : A 1-1 onto A dom F I 2 𝑜 dom G I = dom F I F = G