Metamath Proof Explorer


Theorem f1resfz0f1d

Description: If a function with a sequence of nonnegative integers (starting at 0) as its domain is one-to-one when 0 is removed, and if the range of that restriction does not contain the function's value at the removed integer, then the function is itself one-to-one. (Contributed by BTernaryTau, 4-Oct-2023)

Ref Expression
Hypotheses f1resfz0f1d.1 φK0
f1resfz0f1d.2 φF:0KV
f1resfz0f1d.3 φF1K:1K1-1V
f1resfz0f1d.4 φF0F1K=
Assertion f1resfz0f1d φF:0K1-1V

Proof

Step Hyp Ref Expression
1 f1resfz0f1d.1 φK0
2 f1resfz0f1d.2 φF:0KV
3 f1resfz0f1d.3 φF1K:1K1-1V
4 f1resfz0f1d.4 φF0F1K=
5 fz1ssfz0 1K0K
6 5 a1i φ1K0K
7 0elfz K000K
8 snssi 00K00K
9 1 7 8 3syl φ00K
10 2 9 fssresd φF0:0V
11 eqidd F00=F000=0
12 0nn0 00
13 fveqeq2 x=0F0x=F0yF00=F0y
14 eqeq1 x=0x=y0=y
15 13 14 imbi12d x=0F0x=F0yx=yF00=F0y0=y
16 fveq2 y=0F0y=F00
17 16 eqeq2d y=0F00=F0yF00=F00
18 eqeq2 y=00=y0=0
19 17 18 imbi12d y=0F00=F0y0=yF00=F000=0
20 15 19 2ralsng 0000x0y0F0x=F0yx=yF00=F000=0
21 12 12 20 mp2an x0y0F0x=F0yx=yF00=F000=0
22 11 21 mpbir x0y0F0x=F0yx=y
23 dff13 F0:01-1VF0:0Vx0y0F0x=F0yx=y
24 10 22 23 sylanblrc φF0:01-1V
25 uncom 1K0=01K
26 fz0sn0fz1 K00K=01K
27 1 26 syl φ0K=01K
28 25 27 eqtr4id φ1K0=0K
29 0nelfz1 01K
30 29 neli ¬01K
31 disjsn 1K0=¬01K
32 30 31 mpbir 1K0=
33 uneqdifeq 1K0K1K0=1K0=0K0K1K=0
34 5 32 33 mp2an 1K0=0K0K1K=0
35 28 34 sylib φ0K1K=0
36 35 eqcomd φ0=0K1K
37 36 reseq2d φF0=F0K1K
38 eqidd φV=V
39 37 36 38 f1eq123d φF0:01-1VF0K1K:0K1K1-1V
40 24 39 mpbid φF0K1K:0K1K1-1V
41 36 imaeq2d φF0=F0K1K
42 41 ineq2d φF1KF0=F1KF0K1K
43 incom F0F1K=F1KF0
44 43 4 eqtr3id φF1KF0=
45 42 44 eqtr3d φF1KF0K1K=
46 6 2 3 40 45 f1resrcmplf1d φF:0K1-1V