Metamath Proof Explorer


Theorem fcfval

Description: The set of cluster points of a function. (Contributed by Jeff Hankins, 24-Nov-2009) (Revised by Stefan O'Rear, 9-Aug-2015)

Ref Expression
Assertion fcfval JTopOnXLFilYF:YXJfClusfLF=JfClusXFilMapFL

Proof

Step Hyp Ref Expression
1 df-fcf fClusf=jTop,franFilgjfjfClusjFilMapgf
2 1 a1i JTopOnXLFilYfClusf=jTop,franFilgjfjfClusjFilMapgf
3 simprl JTopOnXLFilYj=Jf=Lj=J
4 3 unieqd JTopOnXLFilYj=Jf=Lj=J
5 toponuni JTopOnXX=J
6 5 ad2antrr JTopOnXLFilYj=Jf=LX=J
7 4 6 eqtr4d JTopOnXLFilYj=Jf=Lj=X
8 unieq f=Lf=L
9 8 ad2antll JTopOnXLFilYj=Jf=Lf=L
10 filunibas LFilYL=Y
11 10 ad2antlr JTopOnXLFilYj=Jf=LL=Y
12 9 11 eqtrd JTopOnXLFilYj=Jf=Lf=Y
13 7 12 oveq12d JTopOnXLFilYj=Jf=Ljf=XY
14 7 oveq1d JTopOnXLFilYj=Jf=LjFilMapg=XFilMapg
15 simprr JTopOnXLFilYj=Jf=Lf=L
16 14 15 fveq12d JTopOnXLFilYj=Jf=LjFilMapgf=XFilMapgL
17 3 16 oveq12d JTopOnXLFilYj=Jf=LjfClusjFilMapgf=JfClusXFilMapgL
18 13 17 mpteq12dv JTopOnXLFilYj=Jf=LgjfjfClusjFilMapgf=gXYJfClusXFilMapgL
19 topontop JTopOnXJTop
20 19 adantr JTopOnXLFilYJTop
21 fvssunirn FilYranFil
22 21 sseli LFilYLranFil
23 22 adantl JTopOnXLFilYLranFil
24 ovex XYV
25 24 mptex gXYJfClusXFilMapgLV
26 25 a1i JTopOnXLFilYgXYJfClusXFilMapgLV
27 2 18 20 23 26 ovmpod JTopOnXLFilYJfClusfL=gXYJfClusXFilMapgL
28 27 3adant3 JTopOnXLFilYF:YXJfClusfL=gXYJfClusXFilMapgL
29 simpr JTopOnXLFilYF:YXg=Fg=F
30 29 oveq2d JTopOnXLFilYF:YXg=FXFilMapg=XFilMapF
31 30 fveq1d JTopOnXLFilYF:YXg=FXFilMapgL=XFilMapFL
32 31 oveq2d JTopOnXLFilYF:YXg=FJfClusXFilMapgL=JfClusXFilMapFL
33 toponmax JTopOnXXJ
34 filtop LFilYYL
35 elmapg XJYLFXYF:YX
36 33 34 35 syl2an JTopOnXLFilYFXYF:YX
37 36 biimp3ar JTopOnXLFilYF:YXFXY
38 ovexd JTopOnXLFilYF:YXJfClusXFilMapFLV
39 28 32 37 38 fvmptd JTopOnXLFilYF:YXJfClusfLF=JfClusXFilMapFL