Metamath Proof Explorer


Theorem fcoreslem4

Description: Lemma 4 for fcores . (Contributed by AV, 17-Sep-2024)

Ref Expression
Hypotheses fcores.f φF:AB
fcores.e E=ranFC
fcores.p P=F-1C
fcores.x X=FP
fcores.g φG:CD
fcores.y Y=GE
Assertion fcoreslem4 φYXFnP

Proof

Step Hyp Ref Expression
1 fcores.f φF:AB
2 fcores.e E=ranFC
3 fcores.p P=F-1C
4 fcores.x X=FP
5 fcores.g φG:CD
6 fcores.y Y=GE
7 5 ffnd φGFnC
8 2 a1i φE=ranFC
9 inss2 ranFCC
10 8 9 eqsstrdi φEC
11 7 10 fnssresd φGEFnE
12 6 fneq1i YFnEGEFnE
13 11 12 sylibr φYFnE
14 1 2 3 4 fcoreslem3 φX:PontoE
15 fofn X:PontoEXFnP
16 14 15 syl φXFnP
17 1 2 3 4 fcoreslem2 φranX=E
18 eqimss ranX=EranXE
19 17 18 syl φranXE
20 fnco YFnEXFnPranXEYXFnP
21 13 16 19 20 syl3anc φYXFnP