Metamath Proof Explorer


Theorem fgraphopab

Description: Express a function as a subset of the Cartesian product. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Assertion fgraphopab F:ABF=ab|aAbBFa=b

Proof

Step Hyp Ref Expression
1 fssxp F:ABFA×B
2 df-ss FA×BFA×B=F
3 1 2 sylib F:ABFA×B=F
4 ffn F:ABFFnA
5 dffn5 FFnAF=aAFa
6 4 5 sylib F:ABF=aAFa
7 6 ineq1d F:ABFA×B=aAFaA×B
8 3 7 eqtr3d F:ABF=aAFaA×B
9 df-mpt aAFa=ab|aAb=Fa
10 df-xp A×B=ab|aAbB
11 9 10 ineq12i aAFaA×B=ab|aAb=Faab|aAbB
12 inopab ab|aAb=Faab|aAbB=ab|aAb=FaaAbB
13 anandi aAb=FabBaAb=FaaAbB
14 ancom b=FabBbBb=Fa
15 14 anbi2i aAb=FabBaAbBb=Fa
16 anass aAbBb=FaaAbBb=Fa
17 eqcom b=FaFa=b
18 17 anbi2i aAbBb=FaaAbBFa=b
19 15 16 18 3bitr2i aAb=FabBaAbBFa=b
20 13 19 bitr3i aAb=FaaAbBaAbBFa=b
21 20 opabbii ab|aAb=FaaAbB=ab|aAbBFa=b
22 11 12 21 3eqtri aAFaA×B=ab|aAbBFa=b
23 8 22 eqtrdi F:ABF=ab|aAbBFa=b