Metamath Proof Explorer


Theorem filss

Description: A filter is closed under taking supersets. (Contributed by FL, 20-Jul-2007) (Revised by Stefan O'Rear, 28-Jul-2015)

Ref Expression
Assertion filss FFilXAFBXABBF

Proof

Step Hyp Ref Expression
1 isfil FFilXFfBasXx𝒫XF𝒫xxF
2 1 simprbi FFilXx𝒫XF𝒫xxF
3 2 adantr FFilXAFBXABx𝒫XF𝒫xxF
4 elfvdm FFilXXdomFil
5 simp2 AFBXABBX
6 elpw2g XdomFilB𝒫XBX
7 6 biimpar XdomFilBXB𝒫X
8 4 5 7 syl2an FFilXAFBXABB𝒫X
9 simpr1 FFilXAFBXABAF
10 simpr3 FFilXAFBXABAB
11 9 10 elpwd FFilXAFBXABA𝒫B
12 inelcm AFA𝒫BF𝒫B
13 9 11 12 syl2anc FFilXAFBXABF𝒫B
14 pweq x=B𝒫x=𝒫B
15 14 ineq2d x=BF𝒫x=F𝒫B
16 15 neeq1d x=BF𝒫xF𝒫B
17 eleq1 x=BxFBF
18 16 17 imbi12d x=BF𝒫xxFF𝒫BBF
19 18 rspccv x𝒫XF𝒫xxFB𝒫XF𝒫BBF
20 3 8 13 19 syl3c FFilXAFBXABBF