Metamath Proof Explorer


Theorem fin23lem17

Description: Lemma for fin23 . By ? Fin3DS ? , U achieves its minimum ( X in the synopsis above, but we will not be assigning a symbol here). TODO: Fix comment; math symbol Fin3DS does not exist. (Contributed by Stefan O'Rear, 4-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Hypotheses fin23lem.a U=seqωiω,uViftiu=utiurant
fin23lem17.f F=g|a𝒫gωxωasucxaxranarana
Assertion fin23lem17 rantFt:ω1-1VranUranU

Proof

Step Hyp Ref Expression
1 fin23lem.a U=seqωiω,uViftiu=utiurant
2 fin23lem17.f F=g|a𝒫gωxωasucxaxranarana
3 1 fin23lem13 cωUsuccUc
4 3 rgen cωUsuccUc
5 fveq1 b=Ubsucc=Usucc
6 fveq1 b=Ubc=Uc
7 5 6 sseq12d b=UbsuccbcUsuccUc
8 7 ralbidv b=UcωbsuccbccωUsuccUc
9 rneq b=Uranb=ranU
10 9 inteqd b=Uranb=ranU
11 10 9 eleq12d b=UranbranbranUranU
12 8 11 imbi12d b=UcωbsuccbcranbranbcωUsuccUcranUranU
13 2 isfin3ds rantFrantFb𝒫rantωcωbsuccbcranbranb
14 13 ibi rantFb𝒫rantωcωbsuccbcranbranb
15 14 adantr rantFt:ω1-1Vb𝒫rantωcωbsuccbcranbranb
16 1 fnseqom UFnω
17 dffn3 UFnωU:ωranU
18 16 17 mpbi U:ωranU
19 pwuni ranU𝒫ranU
20 1 fin23lem16 ranU=rant
21 20 pweqi 𝒫ranU=𝒫rant
22 19 21 sseqtri ranU𝒫rant
23 fss U:ωranUranU𝒫rantU:ω𝒫rant
24 18 22 23 mp2an U:ω𝒫rant
25 vex tV
26 25 rnex rantV
27 26 uniex rantV
28 27 pwex 𝒫rantV
29 f1f t:ω1-1Vt:ωV
30 dmfex tVt:ωVωV
31 25 29 30 sylancr t:ω1-1VωV
32 31 adantl rantFt:ω1-1VωV
33 elmapg 𝒫rantVωVU𝒫rantωU:ω𝒫rant
34 28 32 33 sylancr rantFt:ω1-1VU𝒫rantωU:ω𝒫rant
35 24 34 mpbiri rantFt:ω1-1VU𝒫rantω
36 12 15 35 rspcdva rantFt:ω1-1VcωUsuccUcranUranU
37 4 36 mpi rantFt:ω1-1VranUranU