Description: Lemma for fin23 . X is not empty. We only need here that t has at least one set in its range besides (/) ; the much stronger hypothesis here will serve as our induction hypothesis though. (Contributed by Stefan O'Rear, 1-Nov-2014) (Revised by Mario Carneiro, 6-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fin23lem.a | |
|
fin23lem17.f | |
||
Assertion | fin23lem21 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fin23lem.a | |
|
2 | fin23lem17.f | |
|
3 | 1 2 | fin23lem17 | |
4 | 1 | fnseqom | |
5 | fvelrnb | |
|
6 | 4 5 | ax-mp | |
7 | id | |
|
8 | vex | |
|
9 | f1f1orn | |
|
10 | f1oen3g | |
|
11 | 8 9 10 | sylancr | |
12 | ominf | |
|
13 | ssdif0 | |
|
14 | snfi | |
|
15 | ssfi | |
|
16 | 14 15 | mpan | |
17 | enfi | |
|
18 | 16 17 | imbitrrid | |
19 | 13 18 | biimtrrid | |
20 | 19 | necon3bd | |
21 | 11 12 20 | mpisyl | |
22 | n0 | |
|
23 | eldifsn | |
|
24 | elssuni | |
|
25 | ssn0 | |
|
26 | 24 25 | sylan | |
27 | 23 26 | sylbi | |
28 | 27 | exlimiv | |
29 | 22 28 | sylbi | |
30 | 21 29 | syl | |
31 | 1 | fin23lem14 | |
32 | 7 30 31 | syl2anr | |
33 | neeq1 | |
|
34 | 32 33 | syl5ibcom | |
35 | 34 | rexlimdva | |
36 | 6 35 | biimtrid | |
37 | 36 | adantl | |
38 | 3 37 | mpd | |