Metamath Proof Explorer


Theorem fin23lem21

Description: Lemma for fin23 . X is not empty. We only need here that t has at least one set in its range besides (/) ; the much stronger hypothesis here will serve as our induction hypothesis though. (Contributed by Stefan O'Rear, 1-Nov-2014) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses fin23lem.a U=seqωiω,uViftiu=utiurant
fin23lem17.f F=g|a𝒫gωxωasucxaxranarana
Assertion fin23lem21 rantFt:ω1-1VranU

Proof

Step Hyp Ref Expression
1 fin23lem.a U=seqωiω,uViftiu=utiurant
2 fin23lem17.f F=g|a𝒫gωxωasucxaxranarana
3 1 2 fin23lem17 rantFt:ω1-1VranUranU
4 1 fnseqom UFnω
5 fvelrnb UFnωranUranUaωUa=ranU
6 4 5 ax-mp ranUranUaωUa=ranU
7 id aωaω
8 vex tV
9 f1f1orn t:ω1-1Vt:ω1-1 ontorant
10 f1oen3g tVt:ω1-1 ontorantωrant
11 8 9 10 sylancr t:ω1-1Vωrant
12 ominf ¬ωFin
13 ssdif0 rantrant=
14 snfi Fin
15 ssfi FinrantrantFin
16 14 15 mpan rantrantFin
17 enfi ωrantωFinrantFin
18 16 17 imbitrrid ωrantrantωFin
19 13 18 biimtrrid ωrantrant=ωFin
20 19 necon3bd ωrant¬ωFinrant
21 11 12 20 mpisyl t:ω1-1Vrant
22 n0 rantaarant
23 eldifsn arantaranta
24 elssuni arantarant
25 ssn0 arantarant
26 24 25 sylan arantarant
27 23 26 sylbi arantrant
28 27 exlimiv aarantrant
29 22 28 sylbi rantrant
30 21 29 syl t:ω1-1Vrant
31 1 fin23lem14 aωrantUa
32 7 30 31 syl2anr t:ω1-1VaωUa
33 neeq1 Ua=ranUUaranU
34 32 33 syl5ibcom t:ω1-1VaωUa=ranUranU
35 34 rexlimdva t:ω1-1VaωUa=ranUranU
36 6 35 biimtrid t:ω1-1VranUranUranU
37 36 adantl rantFt:ω1-1VranUranUranU
38 3 37 mpd rantFt:ω1-1VranU