Metamath Proof Explorer


Theorem fincygsubgodexd

Description: A finite cyclic group has subgroups of every possible order. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses fincygsubgodexd.1 B=BaseG
fincygsubgodexd.2 φGCycGrp
fincygsubgodexd.3 φCB
fincygsubgodexd.4 φBFin
fincygsubgodexd.5 φC
Assertion fincygsubgodexd φxSubGrpGx=C

Proof

Step Hyp Ref Expression
1 fincygsubgodexd.1 B=BaseG
2 fincygsubgodexd.2 φGCycGrp
3 fincygsubgodexd.3 φCB
4 fincygsubgodexd.4 φBFin
5 fincygsubgodexd.5 φC
6 eqid G=G
7 1 6 iscyg GCycGrpGGrpyBrannnGy=B
8 7 simprbi GCycGrpyBrannnGy=B
9 2 8 syl φyBrannnGy=B
10 eqid nnGBCGy=nnGBCGy
11 cyggrp GCycGrpGGrp
12 2 11 syl φGGrp
13 12 adantr φyBrannnGy=BGGrp
14 simprl φyBrannnGy=ByB
15 1 12 4 hashfingrpnn φB
16 nndivdvds BCCBBC
17 15 5 16 syl2anc φCBBC
18 3 17 mpbid φBC
19 18 adantr φyBrannnGy=BBC
20 1 6 10 13 14 19 fincygsubgd φyBrannnGy=BrannnGBCGySubGrpG
21 simpr φyBrannnGy=Bx=rannnGBCGyx=rannnGBCGy
22 21 fveq2d φyBrannnGy=Bx=rannnGBCGyx=rannnGBCGy
23 eqid BBC=BBC
24 eqid nnGy=nnGy
25 simprr φyBrannnGy=BrannnGy=B
26 5 nnne0d φC0
27 divconjdvds CBC0BCB
28 3 26 27 syl2anc φBCB
29 28 adantr φyBrannnGy=BBCB
30 4 adantr φyBrannnGy=BBFin
31 1 6 23 24 10 13 14 25 29 30 19 fincygsubgodd φyBrannnGy=BrannnGBCGy=BBC
32 31 adantr φyBrannnGy=Bx=rannnGBCGyrannnGBCGy=BBC
33 15 nncnd φB
34 5 nncnd φC
35 15 nnne0d φB0
36 33 34 35 26 ddcand φBBC=C
37 36 ad2antrr φyBrannnGy=Bx=rannnGBCGyBBC=C
38 22 32 37 3eqtrd φyBrannnGy=Bx=rannnGBCGyx=C
39 20 38 rspcedeq1vd φyBrannnGy=BxSubGrpGx=C
40 9 39 rexlimddv φxSubGrpGx=C