Metamath Proof Explorer


Theorem fincygsubgodexd

Description: A finite cyclic group has subgroups of every possible order. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses fincygsubgodexd.1 B = Base G
fincygsubgodexd.2 φ G CycGrp
fincygsubgodexd.3 φ C B
fincygsubgodexd.4 φ B Fin
fincygsubgodexd.5 φ C
Assertion fincygsubgodexd φ x SubGrp G x = C

Proof

Step Hyp Ref Expression
1 fincygsubgodexd.1 B = Base G
2 fincygsubgodexd.2 φ G CycGrp
3 fincygsubgodexd.3 φ C B
4 fincygsubgodexd.4 φ B Fin
5 fincygsubgodexd.5 φ C
6 eqid G = G
7 1 6 iscyg G CycGrp G Grp y B ran n n G y = B
8 7 simprbi G CycGrp y B ran n n G y = B
9 2 8 syl φ y B ran n n G y = B
10 eqid n n G B C G y = n n G B C G y
11 cyggrp G CycGrp G Grp
12 2 11 syl φ G Grp
13 12 adantr φ y B ran n n G y = B G Grp
14 simprl φ y B ran n n G y = B y B
15 1 12 4 hashfingrpnn φ B
16 nndivdvds B C C B B C
17 15 5 16 syl2anc φ C B B C
18 3 17 mpbid φ B C
19 18 adantr φ y B ran n n G y = B B C
20 1 6 10 13 14 19 fincygsubgd φ y B ran n n G y = B ran n n G B C G y SubGrp G
21 simpr φ y B ran n n G y = B x = ran n n G B C G y x = ran n n G B C G y
22 21 fveq2d φ y B ran n n G y = B x = ran n n G B C G y x = ran n n G B C G y
23 eqid B B C = B B C
24 eqid n n G y = n n G y
25 simprr φ y B ran n n G y = B ran n n G y = B
26 5 nnne0d φ C 0
27 divconjdvds C B C 0 B C B
28 3 26 27 syl2anc φ B C B
29 28 adantr φ y B ran n n G y = B B C B
30 4 adantr φ y B ran n n G y = B B Fin
31 1 6 23 24 10 13 14 25 29 30 19 fincygsubgodd φ y B ran n n G y = B ran n n G B C G y = B B C
32 31 adantr φ y B ran n n G y = B x = ran n n G B C G y ran n n G B C G y = B B C
33 15 nncnd φ B
34 5 nncnd φ C
35 15 nnne0d φ B 0
36 33 34 35 26 ddcand φ B B C = C
37 36 ad2antrr φ y B ran n n G y = B x = ran n n G B C G y B B C = C
38 22 32 37 3eqtrd φ y B ran n n G y = B x = ran n n G B C G y x = C
39 20 38 rspcedeq1vd φ y B ran n n G y = B x SubGrp G x = C
40 9 39 rexlimddv φ x SubGrp G x = C