Description: A finite cyclic group has subgroups of every possible order. (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fincygsubgodexd.1 | |
|
fincygsubgodexd.2 | |
||
fincygsubgodexd.3 | |
||
fincygsubgodexd.4 | |
||
fincygsubgodexd.5 | |
||
Assertion | fincygsubgodexd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fincygsubgodexd.1 | |
|
2 | fincygsubgodexd.2 | |
|
3 | fincygsubgodexd.3 | |
|
4 | fincygsubgodexd.4 | |
|
5 | fincygsubgodexd.5 | |
|
6 | eqid | |
|
7 | 1 6 | iscyg | |
8 | 7 | simprbi | |
9 | 2 8 | syl | |
10 | eqid | |
|
11 | cyggrp | |
|
12 | 2 11 | syl | |
13 | 12 | adantr | |
14 | simprl | |
|
15 | 1 12 4 | hashfingrpnn | |
16 | nndivdvds | |
|
17 | 15 5 16 | syl2anc | |
18 | 3 17 | mpbid | |
19 | 18 | adantr | |
20 | 1 6 10 13 14 19 | fincygsubgd | |
21 | simpr | |
|
22 | 21 | fveq2d | |
23 | eqid | |
|
24 | eqid | |
|
25 | simprr | |
|
26 | 5 | nnne0d | |
27 | divconjdvds | |
|
28 | 3 26 27 | syl2anc | |
29 | 28 | adantr | |
30 | 4 | adantr | |
31 | 1 6 23 24 10 13 14 25 29 30 19 | fincygsubgodd | |
32 | 31 | adantr | |
33 | 15 | nncnd | |
34 | 5 | nncnd | |
35 | 15 | nnne0d | |
36 | 33 34 35 26 | ddcand | |
37 | 36 | ad2antrr | |
38 | 22 32 37 | 3eqtrd | |
39 | 20 38 | rspcedeq1vd | |
40 | 9 39 | rexlimddv | |