| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwexg |  | 
						
							| 2 | 1 | adantr |  | 
						
							| 3 | 2 | pwexd |  | 
						
							| 4 |  | ssrab2 |  | 
						
							| 5 |  | elpw2g |  | 
						
							| 6 | 2 5 | syl |  | 
						
							| 7 | 4 6 | mpbiri |  | 
						
							| 8 | 7 | a1d |  | 
						
							| 9 |  | isinf |  | 
						
							| 10 | 9 | r19.21bi |  | 
						
							| 11 | 10 | ad2ant2lr |  | 
						
							| 12 |  | velpw |  | 
						
							| 13 | 12 | biimpri |  | 
						
							| 14 | 13 | anim1i |  | 
						
							| 15 |  | breq1 |  | 
						
							| 16 | 15 | elrab |  | 
						
							| 17 | 14 16 | sylibr |  | 
						
							| 18 | 17 | eximi |  | 
						
							| 19 | 11 18 | syl |  | 
						
							| 20 |  | eleq2 |  | 
						
							| 21 | 20 | biimpcd |  | 
						
							| 22 | 21 | adantl |  | 
						
							| 23 | 16 | simprbi |  | 
						
							| 24 |  | breq1 |  | 
						
							| 25 | 24 | elrab |  | 
						
							| 26 | 25 | simprbi |  | 
						
							| 27 |  | ensym |  | 
						
							| 28 |  | entr |  | 
						
							| 29 | 27 28 | sylan |  | 
						
							| 30 | 23 26 29 | syl2an |  | 
						
							| 31 | 30 | ex |  | 
						
							| 32 | 31 | adantl |  | 
						
							| 33 |  | nneneq |  | 
						
							| 34 | 33 | biimpd |  | 
						
							| 35 | 34 | ad2antlr |  | 
						
							| 36 | 22 32 35 | 3syld |  | 
						
							| 37 | 19 36 | exlimddv |  | 
						
							| 38 |  | breq2 |  | 
						
							| 39 | 38 | rabbidv |  | 
						
							| 40 | 37 39 | impbid1 |  | 
						
							| 41 | 40 | ex |  | 
						
							| 42 | 8 41 | dom2d |  | 
						
							| 43 | 3 42 | mpd |  |