Description: Equivalent to pythagtriplem4 . Show that C + A and C - A are coprime. (Contributed by SN, 22-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | flt4lem3.a | |
|
flt4lem3.b | |
||
flt4lem3.c | |
||
flt4lem3.1 | |
||
flt4lem3.2 | |
||
flt4lem3.3 | |
||
Assertion | flt4lem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flt4lem3.a | |
|
2 | flt4lem3.b | |
|
3 | flt4lem3.c | |
|
4 | flt4lem3.1 | |
|
5 | flt4lem3.2 | |
|
6 | flt4lem3.3 | |
|
7 | 3 | nnzd | |
8 | 1 | nnzd | |
9 | 7 8 | zaddcld | |
10 | 7 8 | zsubcld | |
11 | 9 10 | gcdcomd | |
12 | 1 2 3 4 5 6 | flt4lem2 | |
13 | 2nn0 | |
|
14 | 13 | a1i | |
15 | 1 2 3 5 6 | fltabcoprm | |
16 | 1 2 3 14 6 15 | fltbccoprm | |
17 | 2 | nnsqcld | |
18 | 17 | nncnd | |
19 | 1 | nnsqcld | |
20 | 19 | nncnd | |
21 | 18 20 | addcomd | |
22 | 21 6 | eqtrd | |
23 | 2 1 3 12 16 22 | flt4lem1 | |
24 | pythagtriplem4 | |
|
25 | 23 24 | syl | |
26 | 11 25 | eqtrd | |