Metamath Proof Explorer


Theorem flt4lem3

Description: Equivalent to pythagtriplem4 . Show that C + A and C - A are coprime. (Contributed by SN, 22-Aug-2024)

Ref Expression
Hypotheses flt4lem3.a φA
flt4lem3.b φB
flt4lem3.c φC
flt4lem3.1 φ2A
flt4lem3.2 φAgcdC=1
flt4lem3.3 φA2+B2=C2
Assertion flt4lem3 φC+AgcdCA=1

Proof

Step Hyp Ref Expression
1 flt4lem3.a φA
2 flt4lem3.b φB
3 flt4lem3.c φC
4 flt4lem3.1 φ2A
5 flt4lem3.2 φAgcdC=1
6 flt4lem3.3 φA2+B2=C2
7 3 nnzd φC
8 1 nnzd φA
9 7 8 zaddcld φC+A
10 7 8 zsubcld φCA
11 9 10 gcdcomd φC+AgcdCA=CAgcdC+A
12 1 2 3 4 5 6 flt4lem2 φ¬2B
13 2nn0 20
14 13 a1i φ20
15 1 2 3 5 6 fltabcoprm φAgcdB=1
16 1 2 3 14 6 15 fltbccoprm φBgcdC=1
17 2 nnsqcld φB2
18 17 nncnd φB2
19 1 nnsqcld φA2
20 19 nncnd φA2
21 18 20 addcomd φB2+A2=A2+B2
22 21 6 eqtrd φB2+A2=C2
23 2 1 3 12 16 22 flt4lem1 φBACB2+A2=C2BgcdA=1¬2B
24 pythagtriplem4 BACB2+A2=C2BgcdA=1¬2BCAgcdC+A=1
25 23 24 syl φCAgcdC+A=1
26 11 25 eqtrd φC+AgcdCA=1