Metamath Proof Explorer


Theorem fmpocos

Description: Composition of two functions. Variation of fmpoco with more context in the substitution hypothesis for T . (Contributed by SN, 14-Mar-2025)

Ref Expression
Hypotheses fmpocos.1 φxAyBRC
fmpocos.2 φF=xA,yBR
fmpocos.3 φG=zCS
fmpocos.4 φxAyBR/zS=T
Assertion fmpocos φGF=xA,yBT

Proof

Step Hyp Ref Expression
1 fmpocos.1 φxAyBRC
2 fmpocos.2 φF=xA,yBR
3 fmpocos.3 φG=zCS
4 fmpocos.4 φxAyBR/zS=T
5 1 ralrimivva φxAyBRC
6 eqid xA,yBR=xA,yBR
7 6 fmpo xAyBRCxA,yBR:A×BC
8 5 7 sylib φxA,yBR:A×BC
9 nfcv _uR
10 nfcv _vR
11 nfcv _xv
12 nfcsb1v _xu/xR
13 11 12 nfcsbw _xv/yu/xR
14 nfcsb1v _yv/yu/xR
15 csbeq1a x=uR=u/xR
16 csbeq1a y=vu/xR=v/yu/xR
17 15 16 sylan9eq x=uy=vR=v/yu/xR
18 9 10 13 14 17 cbvmpo xA,yBR=uA,vBv/yu/xR
19 vex uV
20 vex vV
21 19 20 op2ndd w=uv2ndw=v
22 19 20 op1std w=uv1stw=u
23 22 csbeq1d w=uv1stw/xR=u/xR
24 21 23 csbeq12dv w=uv2ndw/y1stw/xR=v/yu/xR
25 24 mpompt wA×B2ndw/y1stw/xR=uA,vBv/yu/xR
26 18 25 eqtr4i xA,yBR=wA×B2ndw/y1stw/xR
27 26 fmpt wA×B2ndw/y1stw/xRCxA,yBR:A×BC
28 8 27 sylibr φwA×B2ndw/y1stw/xRC
29 2 26 eqtrdi φF=wA×B2ndw/y1stw/xR
30 28 29 3 fmptcos φGF=wA×B2ndw/y1stw/xR/zS
31 24 csbeq1d w=uv2ndw/y1stw/xR/zS=v/yu/xR/zS
32 31 mpompt wA×B2ndw/y1stw/xR/zS=uA,vBv/yu/xR/zS
33 nfcv _uR/zS
34 nfcv _vR/zS
35 nfcv _xS
36 13 35 nfcsbw _xv/yu/xR/zS
37 nfcv _yS
38 14 37 nfcsbw _yv/yu/xR/zS
39 17 csbeq1d x=uy=vR/zS=v/yu/xR/zS
40 33 34 36 38 39 cbvmpo xA,yBR/zS=uA,vBv/yu/xR/zS
41 32 40 eqtr4i wA×B2ndw/y1stw/xR/zS=xA,yBR/zS
42 4 3impb φxAyBR/zS=T
43 42 mpoeq3dva φxA,yBR/zS=xA,yBT
44 41 43 eqtrid φwA×B2ndw/y1stw/xR/zS=xA,yBT
45 30 44 eqtrd φGF=xA,yBT