Description: If ' Y ' is closed under the multiplication of two functions, then Y is closed under the multiplication ( ' X ' ) of a finite number of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fmulcl.1 | |
|
fmulcl.2 | |
||
fmulcl.4 | |
||
fmulcl.5 | |
||
fmulcl.6 | |
||
fmulcl.7 | |
||
Assertion | fmulcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmulcl.1 | |
|
2 | fmulcl.2 | |
|
3 | fmulcl.4 | |
|
4 | fmulcl.5 | |
|
5 | fmulcl.6 | |
|
6 | fmulcl.7 | |
|
7 | elfzuz | |
|
8 | 3 7 | syl | |
9 | elfzuz3 | |
|
10 | fzss2 | |
|
11 | 3 9 10 | 3syl | |
12 | 11 | sselda | |
13 | 4 | ffvelcdmda | |
14 | 12 13 | syldan | |
15 | simprl | |
|
16 | simprr | |
|
17 | 6 | adantr | |
18 | mptexg | |
|
19 | 17 18 | syl | |
20 | fveq1 | |
|
21 | fveq1 | |
|
22 | 20 21 | oveqan12d | |
23 | 22 | mpteq2dv | |
24 | 23 1 | ovmpoga | |
25 | 15 16 19 24 | syl3anc | |
26 | 3simpc | |
|
27 | eleq1w | |
|
28 | 27 | 3anbi2d | |
29 | 20 | oveq1d | |
30 | 29 | mpteq2dv | |
31 | 30 | eleq1d | |
32 | 28 31 | imbi12d | |
33 | eleq1w | |
|
34 | 33 | 3anbi3d | |
35 | 21 | oveq2d | |
36 | 35 | mpteq2dv | |
37 | 36 | eleq1d | |
38 | 34 37 | imbi12d | |
39 | 32 38 5 | vtocl2g | |
40 | 26 39 | mpcom | |
41 | 40 | 3expb | |
42 | 25 41 | eqeltrd | |
43 | 8 14 42 | seqcl | |
44 | 2 43 | eqeltrid | |