Metamath Proof Explorer


Theorem fmulcl

Description: If ' Y ' is closed under the multiplication of two functions, then Y is closed under the multiplication ( ' X ' ) of a finite number of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses fmulcl.1 P=fY,gYtTftgt
fmulcl.2 X=seq1PUN
fmulcl.4 φN1M
fmulcl.5 φU:1MY
fmulcl.6 φfYgYtTftgtY
fmulcl.7 φTV
Assertion fmulcl φXY

Proof

Step Hyp Ref Expression
1 fmulcl.1 P=fY,gYtTftgt
2 fmulcl.2 X=seq1PUN
3 fmulcl.4 φN1M
4 fmulcl.5 φU:1MY
5 fmulcl.6 φfYgYtTftgtY
6 fmulcl.7 φTV
7 elfzuz N1MN1
8 3 7 syl φN1
9 elfzuz3 N1MMN
10 fzss2 MN1N1M
11 3 9 10 3syl φ1N1M
12 11 sselda φh1Nh1M
13 4 ffvelcdmda φh1MUhY
14 12 13 syldan φh1NUhY
15 simprl φhYlYhY
16 simprr φhYlYlY
17 6 adantr φhYlYTV
18 mptexg TVtThtltV
19 17 18 syl φhYlYtThtltV
20 fveq1 f=hft=ht
21 fveq1 g=lgt=lt
22 20 21 oveqan12d f=hg=lftgt=htlt
23 22 mpteq2dv f=hg=ltTftgt=tThtlt
24 23 1 ovmpoga hYlYtThtltVhPl=tThtlt
25 15 16 19 24 syl3anc φhYlYhPl=tThtlt
26 3simpc φhYlYhYlY
27 eleq1w f=hfYhY
28 27 3anbi2d f=hφfYgYφhYgY
29 20 oveq1d f=hftgt=htgt
30 29 mpteq2dv f=htTftgt=tThtgt
31 30 eleq1d f=htTftgtYtThtgtY
32 28 31 imbi12d f=hφfYgYtTftgtYφhYgYtThtgtY
33 eleq1w g=lgYlY
34 33 3anbi3d g=lφhYgYφhYlY
35 21 oveq2d g=lhtgt=htlt
36 35 mpteq2dv g=ltThtgt=tThtlt
37 36 eleq1d g=ltThtgtYtThtltY
38 34 37 imbi12d g=lφhYgYtThtgtYφhYlYtThtltY
39 32 38 5 vtocl2g hYlYφhYlYtThtltY
40 26 39 mpcom φhYlYtThtltY
41 40 3expb φhYlYtThtltY
42 25 41 eqeltrd φhYlYhPlY
43 8 14 42 seqcl φseq1PUNY
44 2 43 eqeltrid φXY