Metamath Proof Explorer


Theorem fncnv

Description: Single-rootedness (see funcnv ) of a class cut down by a Cartesian product. (Contributed by NM, 5-Mar-2007)

Ref Expression
Assertion fncnv RA×B-1FnByB∃!xAxRy

Proof

Step Hyp Ref Expression
1 df-fn RA×B-1FnBFunRA×B-1domRA×B-1=B
2 df-rn ranRA×B=domRA×B-1
3 2 eqeq1i ranRA×B=BdomRA×B-1=B
4 3 anbi2i FunRA×B-1ranRA×B=BFunRA×B-1domRA×B-1=B
5 rninxp ranRA×B=ByBxAxRy
6 5 anbi1i ranRA×B=ByB*xAxRyyBxAxRyyB*xAxRy
7 funcnv FunRA×B-1yranRA×B*xxRA×By
8 raleq ranRA×B=ByranRA×B*xxRA×ByyB*xxRA×By
9 moanimv *xyBxAxRyyB*xxAxRy
10 brinxp2 xRA×ByxAyBxRy
11 an21 xAyBxRyyBxAxRy
12 10 11 bitri xRA×ByyBxAxRy
13 12 mobii *xxRA×By*xyBxAxRy
14 df-rmo *xAxRy*xxAxRy
15 14 imbi2i yB*xAxRyyB*xxAxRy
16 9 13 15 3bitr4i *xxRA×ByyB*xAxRy
17 biimt yB*xAxRyyB*xAxRy
18 16 17 bitr4id yB*xxRA×By*xAxRy
19 18 ralbiia yB*xxRA×ByyB*xAxRy
20 8 19 bitrdi ranRA×B=ByranRA×B*xxRA×ByyB*xAxRy
21 7 20 bitrid ranRA×B=BFunRA×B-1yB*xAxRy
22 21 pm5.32i ranRA×B=BFunRA×B-1ranRA×B=ByB*xAxRy
23 r19.26 yBxAxRy*xAxRyyBxAxRyyB*xAxRy
24 6 22 23 3bitr4i ranRA×B=BFunRA×B-1yBxAxRy*xAxRy
25 ancom FunRA×B-1ranRA×B=BranRA×B=BFunRA×B-1
26 reu5 ∃!xAxRyxAxRy*xAxRy
27 26 ralbii yB∃!xAxRyyBxAxRy*xAxRy
28 24 25 27 3bitr4i FunRA×B-1ranRA×B=ByB∃!xAxRy
29 1 4 28 3bitr2i RA×B-1FnByB∃!xAxRy