Metamath Proof Explorer


Theorem fnres

Description: An equivalence for functionality of a restriction. Compare dffun8 . (Contributed by Mario Carneiro, 20-May-2015) (Proof shortened by Peter Mazsa, 2-Oct-2022)

Ref Expression
Assertion fnres FAFnAxA∃!yxFy

Proof

Step Hyp Ref Expression
1 ancom xA*yxFyxAyxFyxAyxFyxA*yxFy
2 vex yV
3 2 brresi xFAyxAxFy
4 3 mobii *yxFAy*yxAxFy
5 moanimv *yxAxFyxA*yxFy
6 4 5 bitri *yxFAyxA*yxFy
7 6 albii x*yxFAyxxA*yxFy
8 relres RelFA
9 dffun6 FunFARelFAx*yxFAy
10 8 9 mpbiran FunFAx*yxFAy
11 df-ral xA*yxFyxxA*yxFy
12 7 10 11 3bitr4i FunFAxA*yxFy
13 dmres domFA=AdomF
14 inss1 AdomFA
15 13 14 eqsstri domFAA
16 eqss domFA=AdomFAAAdomFA
17 15 16 mpbiran domFA=AAdomFA
18 dfss3 AdomFAxAxdomFA
19 13 elin2 xdomFAxAxdomF
20 19 baib xAxdomFAxdomF
21 vex xV
22 21 eldm xdomFyxFy
23 20 22 bitrdi xAxdomFAyxFy
24 23 ralbiia xAxdomFAxAyxFy
25 18 24 bitri AdomFAxAyxFy
26 17 25 bitri domFA=AxAyxFy
27 12 26 anbi12i FunFAdomFA=AxA*yxFyxAyxFy
28 r19.26 xAyxFy*yxFyxAyxFyxA*yxFy
29 1 27 28 3bitr4i FunFAdomFA=AxAyxFy*yxFy
30 df-fn FAFnAFunFAdomFA=A
31 df-eu ∃!yxFyyxFy*yxFy
32 31 ralbii xA∃!yxFyxAyxFy*yxFy
33 29 30 32 3bitr4i FAFnAxA∃!yxFy