Metamath Proof Explorer


Theorem fompt

Description: Express being onto for a mapping operation. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis fompt.1 F=xAC
Assertion fompt F:AontoBxACByBxAy=C

Proof

Step Hyp Ref Expression
1 fompt.1 F=xAC
2 nfmpt1 _xxAC
3 1 2 nfcxfr _xF
4 3 dffo3f F:AontoBF:AByBxAy=Fx
5 4 simplbi F:AontoBF:AB
6 1 fmpt xACBF:AB
7 6 bicomi F:ABxACB
8 7 biimpi F:ABxACB
9 5 8 syl F:AontoBxACB
10 3 foelrnf F:AontoByBxAy=Fx
11 nfcv _xA
12 nfcv _xB
13 3 11 12 nffo xF:AontoB
14 simpr F:AontoBxAy=Fxy=Fx
15 simpr F:AontoBxAxA
16 9 r19.21bi F:AontoBxACB
17 1 fvmpt2 xACBFx=C
18 15 16 17 syl2anc F:AontoBxAFx=C
19 18 adantr F:AontoBxAy=FxFx=C
20 14 19 eqtrd F:AontoBxAy=Fxy=C
21 20 ex F:AontoBxAy=Fxy=C
22 21 ex F:AontoBxAy=Fxy=C
23 13 22 reximdai F:AontoBxAy=FxxAy=C
24 23 adantr F:AontoByBxAy=FxxAy=C
25 10 24 mpd F:AontoByBxAy=C
26 25 ralrimiva F:AontoByBxAy=C
27 9 26 jca F:AontoBxACByBxAy=C
28 6 biimpi xACBF:AB
29 28 adantr xACByBxAy=CF:AB
30 nfv yxACB
31 nfra1 yyBxAy=C
32 30 31 nfan yxACByBxAy=C
33 simpll xACByBxAy=CyBxACB
34 rspa yBxAy=CyBxAy=C
35 34 adantll xACByBxAy=CyBxAy=C
36 nfra1 xxACB
37 simp3 xACBxAy=Cy=C
38 simpr xACBxAxA
39 rspa xACBxACB
40 38 39 17 syl2anc xACBxAFx=C
41 40 eqcomd xACBxAC=Fx
42 41 3adant3 xACBxAy=CC=Fx
43 37 42 eqtrd xACBxAy=Cy=Fx
44 43 3exp xACBxAy=Cy=Fx
45 36 44 reximdai xACBxAy=CxAy=Fx
46 45 imp xACBxAy=CxAy=Fx
47 33 35 46 syl2anc xACByBxAy=CyBxAy=Fx
48 47 ex xACByBxAy=CyBxAy=Fx
49 32 48 ralrimi xACByBxAy=CyBxAy=Fx
50 29 49 jca xACByBxAy=CF:AByBxAy=Fx
51 50 4 sylibr xACByBxAy=CF:AontoB
52 27 51 impbii F:AontoBxACByBxAy=C