Metamath Proof Explorer


Theorem fopwdom

Description: Covering implies injection on power sets. (Contributed by Stefan O'Rear, 6-Nov-2014) (Revised by Mario Carneiro, 24-Jun-2015) (Revised by AV, 18-Sep-2021)

Ref Expression
Assertion fopwdom F V F : A onto B 𝒫 B 𝒫 A

Proof

Step Hyp Ref Expression
1 imassrn F -1 a ran F -1
2 dfdm4 dom F = ran F -1
3 fof F : A onto B F : A B
4 3 fdmd F : A onto B dom F = A
5 2 4 syl5eqr F : A onto B ran F -1 = A
6 1 5 sseqtrid F : A onto B F -1 a A
7 6 adantl F V F : A onto B F -1 a A
8 cnvexg F V F -1 V
9 8 adantr F V F : A onto B F -1 V
10 imaexg F -1 V F -1 a V
11 elpwg F -1 a V F -1 a 𝒫 A F -1 a A
12 9 10 11 3syl F V F : A onto B F -1 a 𝒫 A F -1 a A
13 7 12 mpbird F V F : A onto B F -1 a 𝒫 A
14 13 a1d F V F : A onto B a 𝒫 B F -1 a 𝒫 A
15 imaeq2 F -1 a = F -1 b F F -1 a = F F -1 b
16 15 adantl F V F : A onto B a 𝒫 B b 𝒫 B F -1 a = F -1 b F F -1 a = F F -1 b
17 simpllr F V F : A onto B a 𝒫 B b 𝒫 B F -1 a = F -1 b F : A onto B
18 simplrl F V F : A onto B a 𝒫 B b 𝒫 B F -1 a = F -1 b a 𝒫 B
19 18 elpwid F V F : A onto B a 𝒫 B b 𝒫 B F -1 a = F -1 b a B
20 foimacnv F : A onto B a B F F -1 a = a
21 17 19 20 syl2anc F V F : A onto B a 𝒫 B b 𝒫 B F -1 a = F -1 b F F -1 a = a
22 simplrr F V F : A onto B a 𝒫 B b 𝒫 B F -1 a = F -1 b b 𝒫 B
23 22 elpwid F V F : A onto B a 𝒫 B b 𝒫 B F -1 a = F -1 b b B
24 foimacnv F : A onto B b B F F -1 b = b
25 17 23 24 syl2anc F V F : A onto B a 𝒫 B b 𝒫 B F -1 a = F -1 b F F -1 b = b
26 16 21 25 3eqtr3d F V F : A onto B a 𝒫 B b 𝒫 B F -1 a = F -1 b a = b
27 26 ex F V F : A onto B a 𝒫 B b 𝒫 B F -1 a = F -1 b a = b
28 imaeq2 a = b F -1 a = F -1 b
29 27 28 impbid1 F V F : A onto B a 𝒫 B b 𝒫 B F -1 a = F -1 b a = b
30 29 ex F V F : A onto B a 𝒫 B b 𝒫 B F -1 a = F -1 b a = b
31 rnexg F V ran F V
32 forn F : A onto B ran F = B
33 32 eleq1d F : A onto B ran F V B V
34 31 33 syl5ibcom F V F : A onto B B V
35 34 imp F V F : A onto B B V
36 35 pwexd F V F : A onto B 𝒫 B V
37 dmfex F V F : A B A V
38 3 37 sylan2 F V F : A onto B A V
39 38 pwexd F V F : A onto B 𝒫 A V
40 14 30 36 39 dom3d F V F : A onto B 𝒫 B 𝒫 A