| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uniiun |
|
| 2 |
|
elun1 |
|
| 3 |
|
foelcdmi |
|
| 4 |
2 3
|
sylan2 |
|
| 5 |
|
eqimss2 |
|
| 6 |
5
|
reximi |
|
| 7 |
4 6
|
syl |
|
| 8 |
7
|
ralrimiva |
|
| 9 |
|
iunss2 |
|
| 10 |
8 9
|
syl |
|
| 11 |
|
simpl |
|
| 12 |
|
uneq1 |
|
| 13 |
|
0un |
|
| 14 |
12 13
|
eqtrdi |
|
| 15 |
14
|
adantl |
|
| 16 |
|
foeq3 |
|
| 17 |
15 16
|
syl |
|
| 18 |
11 17
|
mpbid |
|
| 19 |
|
founiiun |
|
| 20 |
|
unisn0 |
|
| 21 |
19 20
|
eqtr3di |
|
| 22 |
|
0ss |
|
| 23 |
21 22
|
eqsstrdi |
|
| 24 |
18 23
|
syl |
|
| 25 |
|
ssid |
|
| 26 |
|
sseq2 |
|
| 27 |
26
|
rspcev |
|
| 28 |
25 27
|
mpan2 |
|
| 29 |
28
|
adantl |
|
| 30 |
|
fof |
|
| 31 |
30
|
ffvelcdmda |
|
| 32 |
|
elunnel1 |
|
| 33 |
31 32
|
sylan |
|
| 34 |
|
elsni |
|
| 35 |
33 34
|
syl |
|
| 36 |
35
|
adantllr |
|
| 37 |
|
neq0 |
|
| 38 |
37
|
biimpi |
|
| 39 |
38
|
adantr |
|
| 40 |
|
id |
|
| 41 |
|
0ss |
|
| 42 |
40 41
|
eqsstrdi |
|
| 43 |
42
|
anim1ci |
|
| 44 |
43
|
ex |
|
| 45 |
44
|
adantl |
|
| 46 |
45
|
eximdv |
|
| 47 |
39 46
|
mpd |
|
| 48 |
|
df-rex |
|
| 49 |
47 48
|
sylibr |
|
| 50 |
49
|
ad4ant24 |
|
| 51 |
36 50
|
syldan |
|
| 52 |
29 51
|
pm2.61dan |
|
| 53 |
52
|
ralrimiva |
|
| 54 |
|
iunss2 |
|
| 55 |
53 54
|
syl |
|
| 56 |
24 55
|
pm2.61dan |
|
| 57 |
10 56
|
eqssd |
|
| 58 |
1 57
|
eqtrid |
|