Metamath Proof Explorer


Theorem founiiun0

Description: Union expressed as an indexed union, when a map onto is given. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion founiiun0 F:AontoBB=xAFx

Proof

Step Hyp Ref Expression
1 uniiun B=yBy
2 elun1 yByB
3 foelcdmi F:AontoByBxAFx=y
4 2 3 sylan2 F:AontoByBxAFx=y
5 eqimss2 Fx=yyFx
6 5 reximi xAFx=yxAyFx
7 4 6 syl F:AontoByBxAyFx
8 7 ralrimiva F:AontoByBxAyFx
9 iunss2 yBxAyFxyByxAFx
10 8 9 syl F:AontoByByxAFx
11 simpl F:AontoBB=F:AontoB
12 uneq1 B=B=
13 0un =
14 12 13 eqtrdi B=B=
15 14 adantl F:AontoBB=B=
16 foeq3 B=F:AontoBF:Aonto
17 15 16 syl F:AontoBB=F:AontoBF:Aonto
18 11 17 mpbid F:AontoBB=F:Aonto
19 founiiun F:Aonto=xAFx
20 unisn0 =
21 19 20 eqtr3di F:AontoxAFx=
22 0ss yBy
23 21 22 eqsstrdi F:AontoxAFxyBy
24 18 23 syl F:AontoBB=xAFxyBy
25 ssid FxFx
26 sseq2 y=FxFxyFxFx
27 26 rspcev FxBFxFxyBFxy
28 25 27 mpan2 FxByBFxy
29 28 adantl F:AontoB¬B=xAFxByBFxy
30 fof F:AontoBF:AB
31 30 ffvelcdmda F:AontoBxAFxB
32 elunnel1 FxB¬FxBFx
33 31 32 sylan F:AontoBxA¬FxBFx
34 elsni FxFx=
35 33 34 syl F:AontoBxA¬FxBFx=
36 35 adantllr F:AontoB¬B=xA¬FxBFx=
37 neq0 ¬B=yyB
38 37 biimpi ¬B=yyB
39 38 adantr ¬B=Fx=yyB
40 id Fx=Fx=
41 0ss y
42 40 41 eqsstrdi Fx=Fxy
43 42 anim1ci Fx=yByBFxy
44 43 ex Fx=yByBFxy
45 44 adantl ¬B=Fx=yByBFxy
46 45 eximdv ¬B=Fx=yyByyBFxy
47 39 46 mpd ¬B=Fx=yyBFxy
48 df-rex yBFxyyyBFxy
49 47 48 sylibr ¬B=Fx=yBFxy
50 49 ad4ant24 F:AontoB¬B=xAFx=yBFxy
51 36 50 syldan F:AontoB¬B=xA¬FxByBFxy
52 29 51 pm2.61dan F:AontoB¬B=xAyBFxy
53 52 ralrimiva F:AontoB¬B=xAyBFxy
54 iunss2 xAyBFxyxAFxyBy
55 53 54 syl F:AontoB¬B=xAFxyBy
56 24 55 pm2.61dan F:AontoBxAFxyBy
57 10 56 eqssd F:AontoByBy=xAFx
58 1 57 eqtrid F:AontoBB=xAFx