Metamath Proof Explorer


Theorem fprodcn

Description: A finite product of functions to complex numbers from a common topological space is continuous. The class expression for B normally contains free variables k and x to index it. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses fprodcn.d kφ
fprodcn.k K=TopOpenfld
fprodcn.j φJTopOnX
fprodcn.a φAFin
fprodcn.b φkAxXBJCnK
Assertion fprodcn φxXkABJCnK

Proof

Step Hyp Ref Expression
1 fprodcn.d kφ
2 fprodcn.k K=TopOpenfld
3 fprodcn.j φJTopOnX
4 fprodcn.a φAFin
5 fprodcn.b φkAxXBJCnK
6 prodeq1 y=kyB=kB
7 6 mpteq2dv y=xXkyB=xXkB
8 7 eleq1d y=xXkyBJCnKxXkBJCnK
9 prodeq1 y=zkyB=kzB
10 9 mpteq2dv y=zxXkyB=xXkzB
11 10 eleq1d y=zxXkyBJCnKxXkzBJCnK
12 prodeq1 y=zwkyB=kzwB
13 12 mpteq2dv y=zwxXkyB=xXkzwB
14 13 eleq1d y=zwxXkyBJCnKxXkzwBJCnK
15 prodeq1 y=AkyB=kAB
16 15 mpteq2dv y=AxXkyB=xXkAB
17 16 eleq1d y=AxXkyBJCnKxXkABJCnK
18 prod0 kB=1
19 18 mpteq2i xXkB=xX1
20 eqidd x=y1=1
21 20 cbvmptv xX1=yX1
22 19 21 eqtri xXkB=yX1
23 22 a1i φxXkB=yX1
24 2 cnfldtopon KTopOn
25 24 a1i φKTopOn
26 1cnd φ1
27 3 25 26 cnmptc φyX1JCnK
28 23 27 eqeltrd φxXkBJCnK
29 nfcv _ykzwB
30 nfcv _xzw
31 nfcsb1v _xy/xB
32 30 31 nfcprod _xkzwy/xB
33 csbeq1a x=yB=y/xB
34 33 prodeq2ad x=ykzwB=kzwy/xB
35 29 32 34 cbvmpt xXkzwB=yXkzwy/xB
36 35 a1i φzAwAzxXkzBJCnKxXkzwB=yXkzwy/xB
37 nfv kzAwAz
38 1 37 nfan kφzAwAz
39 nfcv _kX
40 nfcv _kz
41 40 nfcprod1 _kkzB
42 39 41 nfmpt _kxXkzB
43 nfcv _kJCnK
44 42 43 nfel kxXkzBJCnK
45 38 44 nfan kφzAwAzxXkzBJCnK
46 3 ad2antrr φzAwAzxXkzBJCnKJTopOnX
47 4 ad2antrr φzAwAzxXkzBJCnKAFin
48 nfcv _yB
49 48 31 33 cbvmpt xXB=yXy/xB
50 49 eqcomi yXy/xB=xXB
51 50 a1i φkAyXy/xB=xXB
52 51 5 eqeltrd φkAyXy/xBJCnK
53 52 ad4ant14 φzAwAzxXkzBJCnKkAyXy/xBJCnK
54 simplrl φzAwAzxXkzBJCnKzA
55 simplrr φzAwAzxXkzBJCnKwAz
56 nfcv _ykzB
57 nfcv _xz
58 57 31 nfcprod _xkzy/xB
59 33 prodeq2sdv x=ykzB=kzy/xB
60 56 58 59 cbvmpt xXkzB=yXkzy/xB
61 60 eleq1i xXkzBJCnKyXkzy/xBJCnK
62 61 biimpi xXkzBJCnKyXkzy/xBJCnK
63 62 adantl φzAwAzxXkzBJCnKyXkzy/xBJCnK
64 45 2 46 47 53 54 55 63 fprodcnlem φzAwAzxXkzBJCnKyXkzwy/xBJCnK
65 36 64 eqeltrd φzAwAzxXkzBJCnKxXkzwBJCnK
66 65 ex φzAwAzxXkzBJCnKxXkzwBJCnK
67 8 11 14 17 28 66 4 findcard2d φxXkABJCnK