Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Finite and infinite products
Finite products
fprodmul
Next ⟩
fproddiv
Metamath Proof Explorer
Ascii
Unicode
Theorem
fprodmul
Description:
The product of two finite products.
(Contributed by
Scott Fenton
, 14-Dec-2017)
Ref
Expression
Hypotheses
fprodmul.1
⊢
φ
→
A
∈
Fin
fprodmul.2
⊢
φ
∧
k
∈
A
→
B
∈
ℂ
fprodmul.3
⊢
φ
∧
k
∈
A
→
C
∈
ℂ
Assertion
fprodmul
⊢
φ
→
∏
k
∈
A
B
C
=
∏
k
∈
A
B
∏
k
∈
A
C
Proof
Step
Hyp
Ref
Expression
1
fprodmul.1
⊢
φ
→
A
∈
Fin
2
fprodmul.2
⊢
φ
∧
k
∈
A
→
B
∈
ℂ
3
fprodmul.3
⊢
φ
∧
k
∈
A
→
C
∈
ℂ
4
1t1e1
⊢
1
⋅
1
=
1
5
prod0
⊢
∏
k
∈
∅
B
=
1
6
prod0
⊢
∏
k
∈
∅
C
=
1
7
5
6
oveq12i
⊢
∏
k
∈
∅
B
∏
k
∈
∅
C
=
1
⋅
1
8
prod0
⊢
∏
k
∈
∅
B
C
=
1
9
4
7
8
3eqtr4ri
⊢
∏
k
∈
∅
B
C
=
∏
k
∈
∅
B
∏
k
∈
∅
C
10
prodeq1
⊢
A
=
∅
→
∏
k
∈
A
B
C
=
∏
k
∈
∅
B
C
11
prodeq1
⊢
A
=
∅
→
∏
k
∈
A
B
=
∏
k
∈
∅
B
12
prodeq1
⊢
A
=
∅
→
∏
k
∈
A
C
=
∏
k
∈
∅
C
13
11
12
oveq12d
⊢
A
=
∅
→
∏
k
∈
A
B
∏
k
∈
A
C
=
∏
k
∈
∅
B
∏
k
∈
∅
C
14
9
10
13
3eqtr4a
⊢
A
=
∅
→
∏
k
∈
A
B
C
=
∏
k
∈
A
B
∏
k
∈
A
C
15
14
a1i
⊢
φ
→
A
=
∅
→
∏
k
∈
A
B
C
=
∏
k
∈
A
B
∏
k
∈
A
C
16
simprl
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
A
∈
ℕ
17
nnuz
⊢
ℕ
=
ℤ
≥
1
18
16
17
eleqtrdi
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
A
∈
ℤ
≥
1
19
2
fmpttd
⊢
φ
→
k
∈
A
⟼
B
:
A
⟶
ℂ
20
19
adantr
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
k
∈
A
⟼
B
:
A
⟶
ℂ
21
f1of
⊢
f
:
1
…
A
⟶
1-1 onto
A
→
f
:
1
…
A
⟶
A
22
21
ad2antll
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
f
:
1
…
A
⟶
A
23
fco
⊢
k
∈
A
⟼
B
:
A
⟶
ℂ
∧
f
:
1
…
A
⟶
A
→
k
∈
A
⟼
B
∘
f
:
1
…
A
⟶
ℂ
24
20
22
23
syl2anc
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
k
∈
A
⟼
B
∘
f
:
1
…
A
⟶
ℂ
25
24
ffvelcdmda
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
∧
n
∈
1
…
A
→
k
∈
A
⟼
B
∘
f
n
∈
ℂ
26
3
fmpttd
⊢
φ
→
k
∈
A
⟼
C
:
A
⟶
ℂ
27
26
adantr
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
k
∈
A
⟼
C
:
A
⟶
ℂ
28
fco
⊢
k
∈
A
⟼
C
:
A
⟶
ℂ
∧
f
:
1
…
A
⟶
A
→
k
∈
A
⟼
C
∘
f
:
1
…
A
⟶
ℂ
29
27
22
28
syl2anc
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
k
∈
A
⟼
C
∘
f
:
1
…
A
⟶
ℂ
30
29
ffvelcdmda
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
∧
n
∈
1
…
A
→
k
∈
A
⟼
C
∘
f
n
∈
ℂ
31
22
ffvelcdmda
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
∧
n
∈
1
…
A
→
f
n
∈
A
32
simpr
⊢
φ
∧
k
∈
A
→
k
∈
A
33
2
3
mulcld
⊢
φ
∧
k
∈
A
→
B
C
∈
ℂ
34
eqid
⊢
k
∈
A
⟼
B
C
=
k
∈
A
⟼
B
C
35
34
fvmpt2
⊢
k
∈
A
∧
B
C
∈
ℂ
→
k
∈
A
⟼
B
C
k
=
B
C
36
32
33
35
syl2anc
⊢
φ
∧
k
∈
A
→
k
∈
A
⟼
B
C
k
=
B
C
37
eqid
⊢
k
∈
A
⟼
B
=
k
∈
A
⟼
B
38
37
fvmpt2
⊢
k
∈
A
∧
B
∈
ℂ
→
k
∈
A
⟼
B
k
=
B
39
32
2
38
syl2anc
⊢
φ
∧
k
∈
A
→
k
∈
A
⟼
B
k
=
B
40
eqid
⊢
k
∈
A
⟼
C
=
k
∈
A
⟼
C
41
40
fvmpt2
⊢
k
∈
A
∧
C
∈
ℂ
→
k
∈
A
⟼
C
k
=
C
42
32
3
41
syl2anc
⊢
φ
∧
k
∈
A
→
k
∈
A
⟼
C
k
=
C
43
39
42
oveq12d
⊢
φ
∧
k
∈
A
→
k
∈
A
⟼
B
k
k
∈
A
⟼
C
k
=
B
C
44
36
43
eqtr4d
⊢
φ
∧
k
∈
A
→
k
∈
A
⟼
B
C
k
=
k
∈
A
⟼
B
k
k
∈
A
⟼
C
k
45
44
ralrimiva
⊢
φ
→
∀
k
∈
A
k
∈
A
⟼
B
C
k
=
k
∈
A
⟼
B
k
k
∈
A
⟼
C
k
46
45
ad2antrr
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
∧
n
∈
1
…
A
→
∀
k
∈
A
k
∈
A
⟼
B
C
k
=
k
∈
A
⟼
B
k
k
∈
A
⟼
C
k
47
nffvmpt1
⊢
Ⅎ
_
k
k
∈
A
⟼
B
C
f
n
48
nffvmpt1
⊢
Ⅎ
_
k
k
∈
A
⟼
B
f
n
49
nfcv
⊢
Ⅎ
_
k
×
50
nffvmpt1
⊢
Ⅎ
_
k
k
∈
A
⟼
C
f
n
51
48
49
50
nfov
⊢
Ⅎ
_
k
k
∈
A
⟼
B
f
n
k
∈
A
⟼
C
f
n
52
47
51
nfeq
⊢
Ⅎ
k
k
∈
A
⟼
B
C
f
n
=
k
∈
A
⟼
B
f
n
k
∈
A
⟼
C
f
n
53
fveq2
⊢
k
=
f
n
→
k
∈
A
⟼
B
C
k
=
k
∈
A
⟼
B
C
f
n
54
fveq2
⊢
k
=
f
n
→
k
∈
A
⟼
B
k
=
k
∈
A
⟼
B
f
n
55
fveq2
⊢
k
=
f
n
→
k
∈
A
⟼
C
k
=
k
∈
A
⟼
C
f
n
56
54
55
oveq12d
⊢
k
=
f
n
→
k
∈
A
⟼
B
k
k
∈
A
⟼
C
k
=
k
∈
A
⟼
B
f
n
k
∈
A
⟼
C
f
n
57
53
56
eqeq12d
⊢
k
=
f
n
→
k
∈
A
⟼
B
C
k
=
k
∈
A
⟼
B
k
k
∈
A
⟼
C
k
↔
k
∈
A
⟼
B
C
f
n
=
k
∈
A
⟼
B
f
n
k
∈
A
⟼
C
f
n
58
52
57
rspc
⊢
f
n
∈
A
→
∀
k
∈
A
k
∈
A
⟼
B
C
k
=
k
∈
A
⟼
B
k
k
∈
A
⟼
C
k
→
k
∈
A
⟼
B
C
f
n
=
k
∈
A
⟼
B
f
n
k
∈
A
⟼
C
f
n
59
31
46
58
sylc
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
∧
n
∈
1
…
A
→
k
∈
A
⟼
B
C
f
n
=
k
∈
A
⟼
B
f
n
k
∈
A
⟼
C
f
n
60
fvco3
⊢
f
:
1
…
A
⟶
A
∧
n
∈
1
…
A
→
k
∈
A
⟼
B
C
∘
f
n
=
k
∈
A
⟼
B
C
f
n
61
22
60
sylan
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
∧
n
∈
1
…
A
→
k
∈
A
⟼
B
C
∘
f
n
=
k
∈
A
⟼
B
C
f
n
62
fvco3
⊢
f
:
1
…
A
⟶
A
∧
n
∈
1
…
A
→
k
∈
A
⟼
B
∘
f
n
=
k
∈
A
⟼
B
f
n
63
22
62
sylan
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
∧
n
∈
1
…
A
→
k
∈
A
⟼
B
∘
f
n
=
k
∈
A
⟼
B
f
n
64
fvco3
⊢
f
:
1
…
A
⟶
A
∧
n
∈
1
…
A
→
k
∈
A
⟼
C
∘
f
n
=
k
∈
A
⟼
C
f
n
65
22
64
sylan
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
∧
n
∈
1
…
A
→
k
∈
A
⟼
C
∘
f
n
=
k
∈
A
⟼
C
f
n
66
63
65
oveq12d
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
∧
n
∈
1
…
A
→
k
∈
A
⟼
B
∘
f
n
k
∈
A
⟼
C
∘
f
n
=
k
∈
A
⟼
B
f
n
k
∈
A
⟼
C
f
n
67
59
61
66
3eqtr4d
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
∧
n
∈
1
…
A
→
k
∈
A
⟼
B
C
∘
f
n
=
k
∈
A
⟼
B
∘
f
n
k
∈
A
⟼
C
∘
f
n
68
18
25
30
67
prodfmul
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
seq
1
×
k
∈
A
⟼
B
C
∘
f
A
=
seq
1
×
k
∈
A
⟼
B
∘
f
A
seq
1
×
k
∈
A
⟼
C
∘
f
A
69
fveq2
⊢
m
=
f
n
→
k
∈
A
⟼
B
C
m
=
k
∈
A
⟼
B
C
f
n
70
simprr
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
f
:
1
…
A
⟶
1-1 onto
A
71
33
fmpttd
⊢
φ
→
k
∈
A
⟼
B
C
:
A
⟶
ℂ
72
71
adantr
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
k
∈
A
⟼
B
C
:
A
⟶
ℂ
73
72
ffvelcdmda
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
∧
m
∈
A
→
k
∈
A
⟼
B
C
m
∈
ℂ
74
69
16
70
73
61
fprod
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
∏
m
∈
A
k
∈
A
⟼
B
C
m
=
seq
1
×
k
∈
A
⟼
B
C
∘
f
A
75
fveq2
⊢
m
=
f
n
→
k
∈
A
⟼
B
m
=
k
∈
A
⟼
B
f
n
76
20
ffvelcdmda
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
∧
m
∈
A
→
k
∈
A
⟼
B
m
∈
ℂ
77
75
16
70
76
63
fprod
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
∏
m
∈
A
k
∈
A
⟼
B
m
=
seq
1
×
k
∈
A
⟼
B
∘
f
A
78
fveq2
⊢
m
=
f
n
→
k
∈
A
⟼
C
m
=
k
∈
A
⟼
C
f
n
79
27
ffvelcdmda
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
∧
m
∈
A
→
k
∈
A
⟼
C
m
∈
ℂ
80
78
16
70
79
65
fprod
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
∏
m
∈
A
k
∈
A
⟼
C
m
=
seq
1
×
k
∈
A
⟼
C
∘
f
A
81
77
80
oveq12d
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
∏
m
∈
A
k
∈
A
⟼
B
m
∏
m
∈
A
k
∈
A
⟼
C
m
=
seq
1
×
k
∈
A
⟼
B
∘
f
A
seq
1
×
k
∈
A
⟼
C
∘
f
A
82
68
74
81
3eqtr4d
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
∏
m
∈
A
k
∈
A
⟼
B
C
m
=
∏
m
∈
A
k
∈
A
⟼
B
m
∏
m
∈
A
k
∈
A
⟼
C
m
83
prodfc
⊢
∏
m
∈
A
k
∈
A
⟼
B
C
m
=
∏
k
∈
A
B
C
84
prodfc
⊢
∏
m
∈
A
k
∈
A
⟼
B
m
=
∏
k
∈
A
B
85
prodfc
⊢
∏
m
∈
A
k
∈
A
⟼
C
m
=
∏
k
∈
A
C
86
84
85
oveq12i
⊢
∏
m
∈
A
k
∈
A
⟼
B
m
∏
m
∈
A
k
∈
A
⟼
C
m
=
∏
k
∈
A
B
∏
k
∈
A
C
87
82
83
86
3eqtr3g
⊢
φ
∧
A
∈
ℕ
∧
f
:
1
…
A
⟶
1-1 onto
A
→
∏
k
∈
A
B
C
=
∏
k
∈
A
B
∏
k
∈
A
C
88
87
expr
⊢
φ
∧
A
∈
ℕ
→
f
:
1
…
A
⟶
1-1 onto
A
→
∏
k
∈
A
B
C
=
∏
k
∈
A
B
∏
k
∈
A
C
89
88
exlimdv
⊢
φ
∧
A
∈
ℕ
→
∃
f
f
:
1
…
A
⟶
1-1 onto
A
→
∏
k
∈
A
B
C
=
∏
k
∈
A
B
∏
k
∈
A
C
90
89
expimpd
⊢
φ
→
A
∈
ℕ
∧
∃
f
f
:
1
…
A
⟶
1-1 onto
A
→
∏
k
∈
A
B
C
=
∏
k
∈
A
B
∏
k
∈
A
C
91
fz1f1o
⊢
A
∈
Fin
→
A
=
∅
∨
A
∈
ℕ
∧
∃
f
f
:
1
…
A
⟶
1-1 onto
A
92
1
91
syl
⊢
φ
→
A
=
∅
∨
A
∈
ℕ
∧
∃
f
f
:
1
…
A
⟶
1-1 onto
A
93
15
90
92
mpjaod
⊢
φ
→
∏
k
∈
A
B
C
=
∏
k
∈
A
B
∏
k
∈
A
C