Metamath Proof Explorer


Theorem fprodmul

Description: The product of two finite products. (Contributed by Scott Fenton, 14-Dec-2017)

Ref Expression
Hypotheses fprodmul.1 φAFin
fprodmul.2 φkAB
fprodmul.3 φkAC
Assertion fprodmul φkABC=kABkAC

Proof

Step Hyp Ref Expression
1 fprodmul.1 φAFin
2 fprodmul.2 φkAB
3 fprodmul.3 φkAC
4 1t1e1 11=1
5 prod0 kB=1
6 prod0 kC=1
7 5 6 oveq12i kBkC=11
8 prod0 kBC=1
9 4 7 8 3eqtr4ri kBC=kBkC
10 prodeq1 A=kABC=kBC
11 prodeq1 A=kAB=kB
12 prodeq1 A=kAC=kC
13 11 12 oveq12d A=kABkAC=kBkC
14 9 10 13 3eqtr4a A=kABC=kABkAC
15 14 a1i φA=kABC=kABkAC
16 simprl φAf:1A1-1 ontoAA
17 nnuz =1
18 16 17 eleqtrdi φAf:1A1-1 ontoAA1
19 2 fmpttd φkAB:A
20 19 adantr φAf:1A1-1 ontoAkAB:A
21 f1of f:1A1-1 ontoAf:1AA
22 21 ad2antll φAf:1A1-1 ontoAf:1AA
23 fco kAB:Af:1AAkABf:1A
24 20 22 23 syl2anc φAf:1A1-1 ontoAkABf:1A
25 24 ffvelcdmda φAf:1A1-1 ontoAn1AkABfn
26 3 fmpttd φkAC:A
27 26 adantr φAf:1A1-1 ontoAkAC:A
28 fco kAC:Af:1AAkACf:1A
29 27 22 28 syl2anc φAf:1A1-1 ontoAkACf:1A
30 29 ffvelcdmda φAf:1A1-1 ontoAn1AkACfn
31 22 ffvelcdmda φAf:1A1-1 ontoAn1AfnA
32 simpr φkAkA
33 2 3 mulcld φkABC
34 eqid kABC=kABC
35 34 fvmpt2 kABCkABCk=BC
36 32 33 35 syl2anc φkAkABCk=BC
37 eqid kAB=kAB
38 37 fvmpt2 kABkABk=B
39 32 2 38 syl2anc φkAkABk=B
40 eqid kAC=kAC
41 40 fvmpt2 kACkACk=C
42 32 3 41 syl2anc φkAkACk=C
43 39 42 oveq12d φkAkABkkACk=BC
44 36 43 eqtr4d φkAkABCk=kABkkACk
45 44 ralrimiva φkAkABCk=kABkkACk
46 45 ad2antrr φAf:1A1-1 ontoAn1AkAkABCk=kABkkACk
47 nffvmpt1 _kkABCfn
48 nffvmpt1 _kkABfn
49 nfcv _k×
50 nffvmpt1 _kkACfn
51 48 49 50 nfov _kkABfnkACfn
52 47 51 nfeq kkABCfn=kABfnkACfn
53 fveq2 k=fnkABCk=kABCfn
54 fveq2 k=fnkABk=kABfn
55 fveq2 k=fnkACk=kACfn
56 54 55 oveq12d k=fnkABkkACk=kABfnkACfn
57 53 56 eqeq12d k=fnkABCk=kABkkACkkABCfn=kABfnkACfn
58 52 57 rspc fnAkAkABCk=kABkkACkkABCfn=kABfnkACfn
59 31 46 58 sylc φAf:1A1-1 ontoAn1AkABCfn=kABfnkACfn
60 fvco3 f:1AAn1AkABCfn=kABCfn
61 22 60 sylan φAf:1A1-1 ontoAn1AkABCfn=kABCfn
62 fvco3 f:1AAn1AkABfn=kABfn
63 22 62 sylan φAf:1A1-1 ontoAn1AkABfn=kABfn
64 fvco3 f:1AAn1AkACfn=kACfn
65 22 64 sylan φAf:1A1-1 ontoAn1AkACfn=kACfn
66 63 65 oveq12d φAf:1A1-1 ontoAn1AkABfnkACfn=kABfnkACfn
67 59 61 66 3eqtr4d φAf:1A1-1 ontoAn1AkABCfn=kABfnkACfn
68 18 25 30 67 prodfmul φAf:1A1-1 ontoAseq1×kABCfA=seq1×kABfAseq1×kACfA
69 fveq2 m=fnkABCm=kABCfn
70 simprr φAf:1A1-1 ontoAf:1A1-1 ontoA
71 33 fmpttd φkABC:A
72 71 adantr φAf:1A1-1 ontoAkABC:A
73 72 ffvelcdmda φAf:1A1-1 ontoAmAkABCm
74 69 16 70 73 61 fprod φAf:1A1-1 ontoAmAkABCm=seq1×kABCfA
75 fveq2 m=fnkABm=kABfn
76 20 ffvelcdmda φAf:1A1-1 ontoAmAkABm
77 75 16 70 76 63 fprod φAf:1A1-1 ontoAmAkABm=seq1×kABfA
78 fveq2 m=fnkACm=kACfn
79 27 ffvelcdmda φAf:1A1-1 ontoAmAkACm
80 78 16 70 79 65 fprod φAf:1A1-1 ontoAmAkACm=seq1×kACfA
81 77 80 oveq12d φAf:1A1-1 ontoAmAkABmmAkACm=seq1×kABfAseq1×kACfA
82 68 74 81 3eqtr4d φAf:1A1-1 ontoAmAkABCm=mAkABmmAkACm
83 prodfc mAkABCm=kABC
84 prodfc mAkABm=kAB
85 prodfc mAkACm=kAC
86 84 85 oveq12i mAkABmmAkACm=kABkAC
87 82 83 86 3eqtr3g φAf:1A1-1 ontoAkABC=kABkAC
88 87 expr φAf:1A1-1 ontoAkABC=kABkAC
89 88 exlimdv φAff:1A1-1 ontoAkABC=kABkAC
90 89 expimpd φAff:1A1-1 ontoAkABC=kABkAC
91 fz1f1o AFinA=Aff:1A1-1 ontoA
92 1 91 syl φA=Aff:1A1-1 ontoA
93 15 90 92 mpjaod φkABC=kABkAC