| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodmul.1 |  | 
						
							| 2 |  | fprodmul.2 |  | 
						
							| 3 |  | fprodmul.3 |  | 
						
							| 4 |  | 1t1e1 |  | 
						
							| 5 |  | prod0 |  | 
						
							| 6 |  | prod0 |  | 
						
							| 7 | 5 6 | oveq12i |  | 
						
							| 8 |  | prod0 |  | 
						
							| 9 | 4 7 8 | 3eqtr4ri |  | 
						
							| 10 |  | prodeq1 |  | 
						
							| 11 |  | prodeq1 |  | 
						
							| 12 |  | prodeq1 |  | 
						
							| 13 | 11 12 | oveq12d |  | 
						
							| 14 | 9 10 13 | 3eqtr4a |  | 
						
							| 15 | 14 | a1i |  | 
						
							| 16 |  | simprl |  | 
						
							| 17 |  | nnuz |  | 
						
							| 18 | 16 17 | eleqtrdi |  | 
						
							| 19 | 2 | fmpttd |  | 
						
							| 20 | 19 | adantr |  | 
						
							| 21 |  | f1of |  | 
						
							| 22 | 21 | ad2antll |  | 
						
							| 23 |  | fco |  | 
						
							| 24 | 20 22 23 | syl2anc |  | 
						
							| 25 | 24 | ffvelcdmda |  | 
						
							| 26 | 3 | fmpttd |  | 
						
							| 27 | 26 | adantr |  | 
						
							| 28 |  | fco |  | 
						
							| 29 | 27 22 28 | syl2anc |  | 
						
							| 30 | 29 | ffvelcdmda |  | 
						
							| 31 | 22 | ffvelcdmda |  | 
						
							| 32 |  | simpr |  | 
						
							| 33 | 2 3 | mulcld |  | 
						
							| 34 |  | eqid |  | 
						
							| 35 | 34 | fvmpt2 |  | 
						
							| 36 | 32 33 35 | syl2anc |  | 
						
							| 37 |  | eqid |  | 
						
							| 38 | 37 | fvmpt2 |  | 
						
							| 39 | 32 2 38 | syl2anc |  | 
						
							| 40 |  | eqid |  | 
						
							| 41 | 40 | fvmpt2 |  | 
						
							| 42 | 32 3 41 | syl2anc |  | 
						
							| 43 | 39 42 | oveq12d |  | 
						
							| 44 | 36 43 | eqtr4d |  | 
						
							| 45 | 44 | ralrimiva |  | 
						
							| 46 | 45 | ad2antrr |  | 
						
							| 47 |  | nffvmpt1 |  | 
						
							| 48 |  | nffvmpt1 |  | 
						
							| 49 |  | nfcv |  | 
						
							| 50 |  | nffvmpt1 |  | 
						
							| 51 | 48 49 50 | nfov |  | 
						
							| 52 | 47 51 | nfeq |  | 
						
							| 53 |  | fveq2 |  | 
						
							| 54 |  | fveq2 |  | 
						
							| 55 |  | fveq2 |  | 
						
							| 56 | 54 55 | oveq12d |  | 
						
							| 57 | 53 56 | eqeq12d |  | 
						
							| 58 | 52 57 | rspc |  | 
						
							| 59 | 31 46 58 | sylc |  | 
						
							| 60 |  | fvco3 |  | 
						
							| 61 | 22 60 | sylan |  | 
						
							| 62 |  | fvco3 |  | 
						
							| 63 | 22 62 | sylan |  | 
						
							| 64 |  | fvco3 |  | 
						
							| 65 | 22 64 | sylan |  | 
						
							| 66 | 63 65 | oveq12d |  | 
						
							| 67 | 59 61 66 | 3eqtr4d |  | 
						
							| 68 | 18 25 30 67 | prodfmul |  | 
						
							| 69 |  | fveq2 |  | 
						
							| 70 |  | simprr |  | 
						
							| 71 | 33 | fmpttd |  | 
						
							| 72 | 71 | adantr |  | 
						
							| 73 | 72 | ffvelcdmda |  | 
						
							| 74 | 69 16 70 73 61 | fprod |  | 
						
							| 75 |  | fveq2 |  | 
						
							| 76 | 20 | ffvelcdmda |  | 
						
							| 77 | 75 16 70 76 63 | fprod |  | 
						
							| 78 |  | fveq2 |  | 
						
							| 79 | 27 | ffvelcdmda |  | 
						
							| 80 | 78 16 70 79 65 | fprod |  | 
						
							| 81 | 77 80 | oveq12d |  | 
						
							| 82 | 68 74 81 | 3eqtr4d |  | 
						
							| 83 |  | prodfc |  | 
						
							| 84 |  | prodfc |  | 
						
							| 85 |  | prodfc |  | 
						
							| 86 | 84 85 | oveq12i |  | 
						
							| 87 | 82 83 86 | 3eqtr3g |  | 
						
							| 88 | 87 | expr |  | 
						
							| 89 | 88 | exlimdv |  | 
						
							| 90 | 89 | expimpd |  | 
						
							| 91 |  | fz1f1o |  | 
						
							| 92 | 1 91 | syl |  | 
						
							| 93 | 15 90 92 | mpjaod |  |