Metamath Proof Explorer


Theorem fpwwe

Description: Given any function F from the powerset of A to A , canth2 gives that the function is not injective, but we can say rather more than that. There is a unique well-ordered subset <. X , ( WX ) >. which "agrees" with F in the sense that each initial segment maps to its upper bound, and such that the entire set maps to an element of the set (so that it cannot be extended without losing the well-ordering). This theorem can be used to prove dfac8a . Theorem 1.1 of KanamoriPincus p. 415. (Contributed by Mario Carneiro, 18-May-2015) (Revised by AV, 20-Jul-2024)

Ref Expression
Hypotheses fpwwe.1 W=xr|xArx×xrWexyxFr-1y=y
fpwwe.2 φAV
fpwwe.3 φx𝒫AdomcardFxA
fpwwe.4 X=domW
Assertion fpwwe φYWRFYYY=XR=WX

Proof

Step Hyp Ref Expression
1 fpwwe.1 W=xr|xArx×xrWexyxFr-1y=y
2 fpwwe.2 φAV
3 fpwwe.3 φx𝒫AdomcardFxA
4 fpwwe.4 X=domW
5 df-ov YF1stR=F1stYR
6 fo1st 1st:VontoV
7 fofn 1st:VontoV1stFnV
8 6 7 ax-mp 1stFnV
9 opex YRV
10 fvco2 1stFnVYRVF1stYR=F1stYR
11 8 9 10 mp2an F1stYR=F1stYR
12 5 11 eqtri YF1stR=F1stYR
13 1 bropaex12 YWRYVRV
14 op1stg YVRV1stYR=Y
15 13 14 syl YWR1stYR=Y
16 15 fveq2d YWRF1stYR=FY
17 12 16 eqtrid YWRYF1stR=FY
18 17 eleq1d YWRYF1stRYFYY
19 18 pm5.32i YWRYF1stRYYWRFYY
20 vex rV
21 20 cnvex r-1V
22 21 imaex r-1yV
23 vex uV
24 20 inex1 ru×uV
25 23 24 opco1i uF1stru×u=Fu
26 fveq2 u=r-1yFu=Fr-1y
27 25 26 eqtrid u=r-1yuF1stru×u=Fr-1y
28 27 eqeq1d u=r-1yuF1stru×u=yFr-1y=y
29 22 28 sbcie [˙r-1y/u]˙uF1stru×u=yFr-1y=y
30 29 ralbii yx[˙r-1y/u]˙uF1stru×u=yyxFr-1y=y
31 30 anbi2i rWexyx[˙r-1y/u]˙uF1stru×u=yrWexyxFr-1y=y
32 31 anbi2i xArx×xrWexyx[˙r-1y/u]˙uF1stru×u=yxArx×xrWexyxFr-1y=y
33 32 opabbii xr|xArx×xrWexyx[˙r-1y/u]˙uF1stru×u=y=xr|xArx×xrWexyxFr-1y=y
34 1 33 eqtr4i W=xr|xArx×xrWexyx[˙r-1y/u]˙uF1stru×u=y
35 vex xV
36 35 20 opco1i xF1str=Fx
37 simp1 xArx×xrWexxA
38 velpw x𝒫AxA
39 37 38 sylibr xArx×xrWexx𝒫A
40 19.8a rWexrrWex
41 40 3ad2ant3 xArx×xrWexrrWex
42 ween xdomcardrrWex
43 41 42 sylibr xArx×xrWexxdomcard
44 39 43 elind xArx×xrWexx𝒫Adomcard
45 44 3 sylan2 φxArx×xrWexFxA
46 36 45 eqeltrid φxArx×xrWexxF1strA
47 34 2 46 4 fpwwe2 φYWRYF1stRYY=XR=WX
48 19 47 bitr3id φYWRFYYY=XR=WX