Description: Addition in the free group is given by concatenation. (Contributed by Mario Carneiro, 1-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frgpadd.w | |
|
frgpadd.g | |
||
frgpadd.r | |
||
frgpadd.n | |
||
Assertion | frgpadd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgpadd.w | |
|
2 | frgpadd.g | |
|
3 | frgpadd.r | |
|
4 | frgpadd.n | |
|
5 | simpl | |
|
6 | simpr | |
|
7 | 1 | efgrcl | |
8 | 7 | adantr | |
9 | 8 | simpld | |
10 | eqid | |
|
11 | 2 10 3 | frgpval | |
12 | 9 11 | syl | |
13 | 8 | simprd | |
14 | 2on | |
|
15 | xpexg | |
|
16 | 9 14 15 | sylancl | |
17 | eqid | |
|
18 | 10 17 | frmdbas | |
19 | 16 18 | syl | |
20 | 13 19 | eqtr4d | |
21 | 1 3 | efger | |
22 | 21 | a1i | |
23 | 10 | frmdmnd | |
24 | 16 23 | syl | |
25 | eqid | |
|
26 | 2 10 3 25 | frgpcpbl | |
27 | 26 | a1i | |
28 | 24 | adantr | |
29 | simprl | |
|
30 | 20 | adantr | |
31 | 29 30 | eleqtrd | |
32 | simprr | |
|
33 | 32 30 | eleqtrd | |
34 | 17 25 | mndcl | |
35 | 28 31 33 34 | syl3anc | |
36 | 35 30 | eleqtrrd | |
37 | 12 20 22 24 27 36 25 4 | qusaddval | |
38 | 5 6 37 | mpd3an23 | |
39 | 5 20 | eleqtrd | |
40 | 6 20 | eleqtrd | |
41 | 10 17 25 | frmdadd | |
42 | 39 40 41 | syl2anc | |
43 | 42 | eceq1d | |
44 | 38 43 | eqtrd | |