Description: In a friendship graph, there is exactly one walk of length 2 between two different vertices. (Contributed by Alexander van der Vekens, 19-Feb-2018) (Revised by AV, 13-May-2021) (Proof shortened by AV, 16-Mar-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | frgr2wwlkeu.v | |
|
Assertion | frgr2wwlk1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgr2wwlkeu.v | |
|
2 | 1 | frgr2wwlkn0 | |
3 | 1 | elwwlks2ons3 | |
4 | 1 | elwwlks2ons3 | |
5 | 3 4 | anbi12i | |
6 | 1 | frgr2wwlkeu | |
7 | s3eq2 | |
|
8 | 7 | eleq1d | |
9 | 8 | reu4 | |
10 | s3eq2 | |
|
11 | 10 | eleq1d | |
12 | 11 | anbi1d | |
13 | equequ1 | |
|
14 | 12 13 | imbi12d | |
15 | s3eq2 | |
|
16 | 15 | eleq1d | |
17 | 16 | anbi2d | |
18 | equequ2 | |
|
19 | 17 18 | imbi12d | |
20 | 14 19 | rspc2va | |
21 | pm3.35 | |
|
22 | s3eq2 | |
|
23 | 22 | equcoms | |
24 | 23 | adantr | |
25 | eqeq12 | |
|
26 | 25 | adantl | |
27 | 24 26 | mpbird | |
28 | 27 | equcomd | |
29 | 28 | ex | |
30 | 21 29 | syl | |
31 | 30 | ex | |
32 | 31 | com23 | |
33 | 32 | exp4b | |
34 | 33 | com13 | |
35 | 34 | imp | |
36 | 35 | com13 | |
37 | 36 | imp | |
38 | 37 | com13 | |
39 | 20 38 | syl | |
40 | 39 | expcom | |
41 | 9 40 | simplbiim | |
42 | 41 | impl | |
43 | 42 | rexlimdva | |
44 | 43 | com23 | |
45 | 44 | rexlimdva | |
46 | 45 | impd | |
47 | 6 46 | syl | |
48 | 5 47 | biimtrid | |
49 | 48 | alrimivv | |
50 | eqeuel | |
|
51 | 2 49 50 | syl2anc | |
52 | ovex | |
|
53 | euhash1 | |
|
54 | 52 53 | mp1i | |
55 | 51 54 | mpbird | |