Metamath Proof Explorer


Theorem frgr2wwlk1

Description: In a friendship graph, there is exactly one walk of length 2 between two different vertices. (Contributed by Alexander van der Vekens, 19-Feb-2018) (Revised by AV, 13-May-2021) (Proof shortened by AV, 16-Mar-2022)

Ref Expression
Hypothesis frgr2wwlkeu.v V=VtxG
Assertion frgr2wwlk1 GFriendGraphAVBVABA2WWalksNOnGB=1

Proof

Step Hyp Ref Expression
1 frgr2wwlkeu.v V=VtxG
2 1 frgr2wwlkn0 GFriendGraphAVBVABA2WWalksNOnGB
3 1 elwwlks2ons3 wA2WWalksNOnGBdVw=⟨“AdB”⟩⟨“AdB”⟩A2WWalksNOnGB
4 1 elwwlks2ons3 tA2WWalksNOnGBcVt=⟨“AcB”⟩⟨“AcB”⟩A2WWalksNOnGB
5 3 4 anbi12i wA2WWalksNOnGBtA2WWalksNOnGBdVw=⟨“AdB”⟩⟨“AdB”⟩A2WWalksNOnGBcVt=⟨“AcB”⟩⟨“AcB”⟩A2WWalksNOnGB
6 1 frgr2wwlkeu GFriendGraphAVBVAB∃!xV⟨“AxB”⟩A2WWalksNOnGB
7 s3eq2 x=y⟨“AxB”⟩=⟨“AyB”⟩
8 7 eleq1d x=y⟨“AxB”⟩A2WWalksNOnGB⟨“AyB”⟩A2WWalksNOnGB
9 8 reu4 ∃!xV⟨“AxB”⟩A2WWalksNOnGBxV⟨“AxB”⟩A2WWalksNOnGBxVyV⟨“AxB”⟩A2WWalksNOnGB⟨“AyB”⟩A2WWalksNOnGBx=y
10 s3eq2 x=d⟨“AxB”⟩=⟨“AdB”⟩
11 10 eleq1d x=d⟨“AxB”⟩A2WWalksNOnGB⟨“AdB”⟩A2WWalksNOnGB
12 11 anbi1d x=d⟨“AxB”⟩A2WWalksNOnGB⟨“AyB”⟩A2WWalksNOnGB⟨“AdB”⟩A2WWalksNOnGB⟨“AyB”⟩A2WWalksNOnGB
13 equequ1 x=dx=yd=y
14 12 13 imbi12d x=d⟨“AxB”⟩A2WWalksNOnGB⟨“AyB”⟩A2WWalksNOnGBx=y⟨“AdB”⟩A2WWalksNOnGB⟨“AyB”⟩A2WWalksNOnGBd=y
15 s3eq2 y=c⟨“AyB”⟩=⟨“AcB”⟩
16 15 eleq1d y=c⟨“AyB”⟩A2WWalksNOnGB⟨“AcB”⟩A2WWalksNOnGB
17 16 anbi2d y=c⟨“AdB”⟩A2WWalksNOnGB⟨“AyB”⟩A2WWalksNOnGB⟨“AdB”⟩A2WWalksNOnGB⟨“AcB”⟩A2WWalksNOnGB
18 equequ2 y=cd=yd=c
19 17 18 imbi12d y=c⟨“AdB”⟩A2WWalksNOnGB⟨“AyB”⟩A2WWalksNOnGBd=y⟨“AdB”⟩A2WWalksNOnGB⟨“AcB”⟩A2WWalksNOnGBd=c
20 14 19 rspc2va dVcVxVyV⟨“AxB”⟩A2WWalksNOnGB⟨“AyB”⟩A2WWalksNOnGBx=y⟨“AdB”⟩A2WWalksNOnGB⟨“AcB”⟩A2WWalksNOnGBd=c
21 pm3.35 ⟨“AdB”⟩A2WWalksNOnGB⟨“AcB”⟩A2WWalksNOnGB⟨“AdB”⟩A2WWalksNOnGB⟨“AcB”⟩A2WWalksNOnGBd=cd=c
22 s3eq2 c=d⟨“AcB”⟩=⟨“AdB”⟩
23 22 equcoms d=c⟨“AcB”⟩=⟨“AdB”⟩
24 23 adantr d=ct=⟨“AcB”⟩w=⟨“AdB”⟩⟨“AcB”⟩=⟨“AdB”⟩
25 eqeq12 t=⟨“AcB”⟩w=⟨“AdB”⟩t=w⟨“AcB”⟩=⟨“AdB”⟩
26 25 adantl d=ct=⟨“AcB”⟩w=⟨“AdB”⟩t=w⟨“AcB”⟩=⟨“AdB”⟩
27 24 26 mpbird d=ct=⟨“AcB”⟩w=⟨“AdB”⟩t=w
28 27 equcomd d=ct=⟨“AcB”⟩w=⟨“AdB”⟩w=t
29 28 ex d=ct=⟨“AcB”⟩w=⟨“AdB”⟩w=t
30 21 29 syl ⟨“AdB”⟩A2WWalksNOnGB⟨“AcB”⟩A2WWalksNOnGB⟨“AdB”⟩A2WWalksNOnGB⟨“AcB”⟩A2WWalksNOnGBd=ct=⟨“AcB”⟩w=⟨“AdB”⟩w=t
31 30 ex ⟨“AdB”⟩A2WWalksNOnGB⟨“AcB”⟩A2WWalksNOnGB⟨“AdB”⟩A2WWalksNOnGB⟨“AcB”⟩A2WWalksNOnGBd=ct=⟨“AcB”⟩w=⟨“AdB”⟩w=t
32 31 com23 ⟨“AdB”⟩A2WWalksNOnGB⟨“AcB”⟩A2WWalksNOnGBt=⟨“AcB”⟩w=⟨“AdB”⟩⟨“AdB”⟩A2WWalksNOnGB⟨“AcB”⟩A2WWalksNOnGBd=cw=t
33 32 exp4b ⟨“AdB”⟩A2WWalksNOnGB⟨“AcB”⟩A2WWalksNOnGBt=⟨“AcB”⟩w=⟨“AdB”⟩⟨“AdB”⟩A2WWalksNOnGB⟨“AcB”⟩A2WWalksNOnGBd=cw=t
34 33 com13 t=⟨“AcB”⟩⟨“AcB”⟩A2WWalksNOnGB⟨“AdB”⟩A2WWalksNOnGBw=⟨“AdB”⟩⟨“AdB”⟩A2WWalksNOnGB⟨“AcB”⟩A2WWalksNOnGBd=cw=t
35 34 imp t=⟨“AcB”⟩⟨“AcB”⟩A2WWalksNOnGB⟨“AdB”⟩A2WWalksNOnGBw=⟨“AdB”⟩⟨“AdB”⟩A2WWalksNOnGB⟨“AcB”⟩A2WWalksNOnGBd=cw=t
36 35 com13 w=⟨“AdB”⟩⟨“AdB”⟩A2WWalksNOnGBt=⟨“AcB”⟩⟨“AcB”⟩A2WWalksNOnGB⟨“AdB”⟩A2WWalksNOnGB⟨“AcB”⟩A2WWalksNOnGBd=cw=t
37 36 imp w=⟨“AdB”⟩⟨“AdB”⟩A2WWalksNOnGBt=⟨“AcB”⟩⟨“AcB”⟩A2WWalksNOnGB⟨“AdB”⟩A2WWalksNOnGB⟨“AcB”⟩A2WWalksNOnGBd=cw=t
38 37 com13 ⟨“AdB”⟩A2WWalksNOnGB⟨“AcB”⟩A2WWalksNOnGBd=ct=⟨“AcB”⟩⟨“AcB”⟩A2WWalksNOnGBw=⟨“AdB”⟩⟨“AdB”⟩A2WWalksNOnGBw=t
39 20 38 syl dVcVxVyV⟨“AxB”⟩A2WWalksNOnGB⟨“AyB”⟩A2WWalksNOnGBx=yt=⟨“AcB”⟩⟨“AcB”⟩A2WWalksNOnGBw=⟨“AdB”⟩⟨“AdB”⟩A2WWalksNOnGBw=t
40 39 expcom xVyV⟨“AxB”⟩A2WWalksNOnGB⟨“AyB”⟩A2WWalksNOnGBx=ydVcVt=⟨“AcB”⟩⟨“AcB”⟩A2WWalksNOnGBw=⟨“AdB”⟩⟨“AdB”⟩A2WWalksNOnGBw=t
41 9 40 simplbiim ∃!xV⟨“AxB”⟩A2WWalksNOnGBdVcVt=⟨“AcB”⟩⟨“AcB”⟩A2WWalksNOnGBw=⟨“AdB”⟩⟨“AdB”⟩A2WWalksNOnGBw=t
42 41 impl ∃!xV⟨“AxB”⟩A2WWalksNOnGBdVcVt=⟨“AcB”⟩⟨“AcB”⟩A2WWalksNOnGBw=⟨“AdB”⟩⟨“AdB”⟩A2WWalksNOnGBw=t
43 42 rexlimdva ∃!xV⟨“AxB”⟩A2WWalksNOnGBdVcVt=⟨“AcB”⟩⟨“AcB”⟩A2WWalksNOnGBw=⟨“AdB”⟩⟨“AdB”⟩A2WWalksNOnGBw=t
44 43 com23 ∃!xV⟨“AxB”⟩A2WWalksNOnGBdVw=⟨“AdB”⟩⟨“AdB”⟩A2WWalksNOnGBcVt=⟨“AcB”⟩⟨“AcB”⟩A2WWalksNOnGBw=t
45 44 rexlimdva ∃!xV⟨“AxB”⟩A2WWalksNOnGBdVw=⟨“AdB”⟩⟨“AdB”⟩A2WWalksNOnGBcVt=⟨“AcB”⟩⟨“AcB”⟩A2WWalksNOnGBw=t
46 45 impd ∃!xV⟨“AxB”⟩A2WWalksNOnGBdVw=⟨“AdB”⟩⟨“AdB”⟩A2WWalksNOnGBcVt=⟨“AcB”⟩⟨“AcB”⟩A2WWalksNOnGBw=t
47 6 46 syl GFriendGraphAVBVABdVw=⟨“AdB”⟩⟨“AdB”⟩A2WWalksNOnGBcVt=⟨“AcB”⟩⟨“AcB”⟩A2WWalksNOnGBw=t
48 5 47 biimtrid GFriendGraphAVBVABwA2WWalksNOnGBtA2WWalksNOnGBw=t
49 48 alrimivv GFriendGraphAVBVABwtwA2WWalksNOnGBtA2WWalksNOnGBw=t
50 eqeuel A2WWalksNOnGBwtwA2WWalksNOnGBtA2WWalksNOnGBw=t∃!wwA2WWalksNOnGB
51 2 49 50 syl2anc GFriendGraphAVBVAB∃!wwA2WWalksNOnGB
52 ovex A2WWalksNOnGBV
53 euhash1 A2WWalksNOnGBVA2WWalksNOnGB=1∃!wwA2WWalksNOnGB
54 52 53 mp1i GFriendGraphAVBVABA2WWalksNOnGB=1∃!wwA2WWalksNOnGB
55 51 54 mpbird GFriendGraphAVBVABA2WWalksNOnGB=1