| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frgrreggt1.v |
|
| 2 |
|
simp1 |
|
| 3 |
2
|
anim1ci |
|
| 4 |
|
simp3 |
|
| 5 |
|
simp2 |
|
| 6 |
4 5
|
jca |
|
| 7 |
6
|
adantr |
|
| 8 |
1
|
numclwwlk7lem |
|
| 9 |
3 7 8
|
syl2anc |
|
| 10 |
|
2z |
|
| 11 |
10
|
a1i |
|
| 12 |
|
nn0z |
|
| 13 |
12
|
adantr |
|
| 14 |
|
peano2zm |
|
| 15 |
13 14
|
syl |
|
| 16 |
|
zltlem1 |
|
| 17 |
10 12 16
|
sylancr |
|
| 18 |
17
|
biimpa |
|
| 19 |
|
eluz2 |
|
| 20 |
11 15 18 19
|
syl3anbrc |
|
| 21 |
|
exprmfct |
|
| 22 |
20 21
|
syl |
|
| 23 |
5
|
anim1ci |
|
| 24 |
1
|
finrusgrfusgr |
|
| 25 |
23 24
|
syl |
|
| 26 |
25
|
3ad2ant3 |
|
| 27 |
|
simp1l |
|
| 28 |
|
numclwwlk8 |
|
| 29 |
26 27 28
|
syl2anc |
|
| 30 |
3
|
3ad2ant3 |
|
| 31 |
|
pm3.22 |
|
| 32 |
31
|
3adant1 |
|
| 33 |
32
|
adantr |
|
| 34 |
33
|
3ad2ant3 |
|
| 35 |
|
simp1 |
|
| 36 |
1
|
numclwwlk7 |
|
| 37 |
30 34 35 36
|
syl3anc |
|
| 38 |
|
eqeq1 |
|
| 39 |
|
ax-1ne0 |
|
| 40 |
39
|
nesymi |
|
| 41 |
40
|
pm2.21i |
|
| 42 |
38 41
|
biimtrdi |
|
| 43 |
29 37 42
|
sylc |
|
| 44 |
43
|
a1d |
|
| 45 |
44
|
3exp |
|
| 46 |
45
|
rexlimiva |
|
| 47 |
22 46
|
mpcom |
|
| 48 |
47
|
expcom |
|
| 49 |
48
|
com23 |
|
| 50 |
|
1red |
|
| 51 |
|
nn0re |
|
| 52 |
50 51
|
ltnled |
|
| 53 |
|
1e2m1 |
|
| 54 |
53
|
a1i |
|
| 55 |
54
|
breq2d |
|
| 56 |
55
|
notbid |
|
| 57 |
|
zltlem1 |
|
| 58 |
12 10 57
|
sylancl |
|
| 59 |
58
|
bicomd |
|
| 60 |
59
|
notbid |
|
| 61 |
52 56 60
|
3bitrd |
|
| 62 |
|
2re |
|
| 63 |
|
lttri3 |
|
| 64 |
63
|
biimprd |
|
| 65 |
51 62 64
|
sylancl |
|
| 66 |
65
|
expd |
|
| 67 |
61 66
|
sylbid |
|
| 68 |
67
|
com3r |
|
| 69 |
68
|
a1d |
|
| 70 |
49 69
|
pm2.61i |
|
| 71 |
9 70
|
mpd |
|
| 72 |
71
|
expimpd |
|