| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frrlem9.1 |
|
| 2 |
|
frrlem9.2 |
|
| 3 |
|
frrlem9.3 |
|
| 4 |
|
vex |
|
| 5 |
4
|
eldm2 |
|
| 6 |
1 2
|
frrlem5 |
|
| 7 |
1
|
unieqi |
|
| 8 |
6 7
|
eqtri |
|
| 9 |
8
|
eleq2i |
|
| 10 |
|
eluniab |
|
| 11 |
9 10
|
bitri |
|
| 12 |
|
19.8a |
|
| 13 |
12
|
3ad2ant2 |
|
| 14 |
|
abid |
|
| 15 |
13 14
|
sylibr |
|
| 16 |
|
elssuni |
|
| 17 |
15 16
|
syl |
|
| 18 |
17 8
|
sseqtrrdi |
|
| 19 |
|
simpl23 |
|
| 20 |
|
simpl3 |
|
| 21 |
|
vex |
|
| 22 |
4 21
|
opeldm |
|
| 23 |
20 22
|
syl |
|
| 24 |
|
simpl21 |
|
| 25 |
24
|
fndmd |
|
| 26 |
23 25
|
eleqtrd |
|
| 27 |
|
rsp |
|
| 28 |
19 26 27
|
sylc |
|
| 29 |
|
simpl1 |
|
| 30 |
1 2 3
|
frrlem9 |
|
| 31 |
29 30
|
syl |
|
| 32 |
|
simpr |
|
| 33 |
|
funssfv |
|
| 34 |
31 32 23 33
|
syl3anc |
|
| 35 |
|
simp22r |
|
| 36 |
35
|
adantr |
|
| 37 |
|
rsp |
|
| 38 |
36 26 37
|
sylc |
|
| 39 |
38 25
|
sseqtrrd |
|
| 40 |
|
fun2ssres |
|
| 41 |
31 32 39 40
|
syl3anc |
|
| 42 |
41
|
oveq2d |
|
| 43 |
28 34 42
|
3eqtr4d |
|
| 44 |
18 43
|
mpdan |
|
| 45 |
44
|
3exp |
|
| 46 |
45
|
exlimdv |
|
| 47 |
46
|
impcomd |
|
| 48 |
47
|
exlimdv |
|
| 49 |
11 48
|
biimtrid |
|
| 50 |
49
|
exlimdv |
|
| 51 |
5 50
|
biimtrid |
|
| 52 |
51
|
imp |
|