Step |
Hyp |
Ref |
Expression |
1 |
|
frrlem9.1 |
|
2 |
|
frrlem9.2 |
|
3 |
|
frrlem9.3 |
|
4 |
|
vex |
|
5 |
4
|
eldm2 |
|
6 |
1 2
|
frrlem5 |
|
7 |
1
|
unieqi |
|
8 |
6 7
|
eqtri |
|
9 |
8
|
eleq2i |
|
10 |
|
eluniab |
|
11 |
9 10
|
bitri |
|
12 |
|
19.8a |
|
13 |
12
|
3ad2ant2 |
|
14 |
|
abid |
|
15 |
13 14
|
sylibr |
|
16 |
|
elssuni |
|
17 |
15 16
|
syl |
|
18 |
17 8
|
sseqtrrdi |
|
19 |
|
simpl23 |
|
20 |
|
simpl3 |
|
21 |
|
vex |
|
22 |
4 21
|
opeldm |
|
23 |
20 22
|
syl |
|
24 |
|
simpl21 |
|
25 |
24
|
fndmd |
|
26 |
23 25
|
eleqtrd |
|
27 |
|
rsp |
|
28 |
19 26 27
|
sylc |
|
29 |
|
simpl1 |
|
30 |
1 2 3
|
frrlem9 |
|
31 |
29 30
|
syl |
|
32 |
|
simpr |
|
33 |
|
funssfv |
|
34 |
31 32 23 33
|
syl3anc |
|
35 |
|
simp22r |
|
36 |
35
|
adantr |
|
37 |
|
rsp |
|
38 |
36 26 37
|
sylc |
|
39 |
38 25
|
sseqtrrd |
|
40 |
|
fun2ssres |
|
41 |
31 32 39 40
|
syl3anc |
|
42 |
41
|
oveq2d |
|
43 |
28 34 42
|
3eqtr4d |
|
44 |
18 43
|
mpdan |
|
45 |
44
|
3exp |
|
46 |
45
|
exlimdv |
|
47 |
46
|
impcomd |
|
48 |
47
|
exlimdv |
|
49 |
11 48
|
syl5bi |
|
50 |
49
|
exlimdv |
|
51 |
5 50
|
syl5bi |
|
52 |
51
|
imp |
|