Description: The class of functions with a given domain that is a set and a given codomain is mapped, through evaluation at a point of the domain, onto the codomain. (Contributed by AV, 15-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsetfocdm.f | |
|
fsetfocdm.s | |
||
Assertion | fsetfocdm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsetfocdm.f | |
|
2 | fsetfocdm.s | |
|
3 | 1 2 | fsetfcdm | |
4 | 3 | adantl | |
5 | simplr | |
|
6 | eqid | |
|
7 | 5 6 | fmptd | |
8 | simpll | |
|
9 | 8 | mptexd | |
10 | feq1 | |
|
11 | 10 1 | elab2g | |
12 | 9 11 | syl | |
13 | 7 12 | mpbird | |
14 | fveq2 | |
|
15 | 14 | eqeq2d | |
16 | 15 | adantl | |
17 | fveq1 | |
|
18 | 17 | cbvmptv | |
19 | 2 18 | eqtri | |
20 | 19 | a1i | |
21 | fveq1 | |
|
22 | 21 | adantl | |
23 | fvexd | |
|
24 | 20 22 13 23 | fvmptd | |
25 | eqidd | |
|
26 | eqidd | |
|
27 | simpr | |
|
28 | vex | |
|
29 | 28 | a1i | |
30 | 25 26 27 29 | fvmptd | |
31 | 30 | adantr | |
32 | 24 31 | eqtr2d | |
33 | 13 16 32 | rspcedvd | |
34 | 33 | ralrimiva | |
35 | dffo3 | |
|
36 | 4 34 35 | sylanbrc | |