Metamath Proof Explorer


Theorem fsetfocdm

Description: The class of functions with a given domain that is a set and a given codomain is mapped, through evaluation at a point of the domain, onto the codomain. (Contributed by AV, 15-Sep-2024)

Ref Expression
Hypotheses fsetfocdm.f F=f|f:AB
fsetfocdm.s S=gFgX
Assertion fsetfocdm AVXAS:FontoB

Proof

Step Hyp Ref Expression
1 fsetfocdm.f F=f|f:AB
2 fsetfocdm.s S=gFgX
3 1 2 fsetfcdm XAS:FB
4 3 adantl AVXAS:FB
5 simplr AVXAgBxAgB
6 eqid xAg=xAg
7 5 6 fmptd AVXAgBxAg:AB
8 simpll AVXAgBAV
9 8 mptexd AVXAgBxAgV
10 feq1 f=xAgf:ABxAg:AB
11 10 1 elab2g xAgVxAgFxAg:AB
12 9 11 syl AVXAgBxAgFxAg:AB
13 7 12 mpbird AVXAgBxAgF
14 fveq2 h=xAgSh=SxAg
15 14 eqeq2d h=xAgg=Shg=SxAg
16 15 adantl AVXAgBh=xAgg=Shg=SxAg
17 fveq1 g=fgX=fX
18 17 cbvmptv gFgX=fFfX
19 2 18 eqtri S=fFfX
20 19 a1i AVXAgBS=fFfX
21 fveq1 f=xAgfX=xAgX
22 21 adantl AVXAgBf=xAgfX=xAgX
23 fvexd AVXAgBxAgXV
24 20 22 13 23 fvmptd AVXAgBSxAg=xAgX
25 eqidd AVXAxAg=xAg
26 eqidd AVXAx=Xg=g
27 simpr AVXAXA
28 vex gV
29 28 a1i AVXAgV
30 25 26 27 29 fvmptd AVXAxAgX=g
31 30 adantr AVXAgBxAgX=g
32 24 31 eqtr2d AVXAgBg=SxAg
33 13 16 32 rspcedvd AVXAgBhFg=Sh
34 33 ralrimiva AVXAgBhFg=Sh
35 dffo3 S:FontoBS:FBgBhFg=Sh
36 4 34 35 sylanbrc AVXAS:FontoB