Metamath Proof Explorer


Theorem fsumcnv

Description: Transform a region of summation by using the converse operation. (Contributed by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses fsumcnv.1 x=jkB=D
fsumcnv.2 y=kjC=D
fsumcnv.3 φAFin
fsumcnv.4 φRelA
fsumcnv.5 φxAB
Assertion fsumcnv φxAB=yA-1C

Proof

Step Hyp Ref Expression
1 fsumcnv.1 x=jkB=D
2 fsumcnv.2 y=kjC=D
3 fsumcnv.3 φAFin
4 fsumcnv.4 φRelA
5 fsumcnv.5 φxAB
6 csbeq1a x=2ndy1styB=2ndy1sty/xB
7 fvex 2ndyV
8 fvex 1styV
9 opex jkV
10 9 1 csbie jk/xB=D
11 opeq12 j=2ndyk=1styjk=2ndy1sty
12 11 csbeq1d j=2ndyk=1styjk/xB=2ndy1sty/xB
13 10 12 eqtr3id j=2ndyk=1styD=2ndy1sty/xB
14 7 8 13 csbie2 2ndy/j1sty/kD=2ndy1sty/xB
15 6 14 eqtr4di x=2ndy1styB=2ndy/j1sty/kD
16 cnvfi AFinA-1Fin
17 3 16 syl φA-1Fin
18 relcnv RelA-1
19 cnvf1o RelA-1zA-1z-1:A-11-1 ontoA-1-1
20 18 19 ax-mp zA-1z-1:A-11-1 ontoA-1-1
21 dfrel2 RelAA-1-1=A
22 4 21 sylib φA-1-1=A
23 22 f1oeq3d φzA-1z-1:A-11-1 ontoA-1-1zA-1z-1:A-11-1 ontoA
24 20 23 mpbii φzA-1z-1:A-11-1 ontoA
25 1st2nd RelA-1yA-1y=1sty2ndy
26 18 25 mpan yA-1y=1sty2ndy
27 26 fveq2d yA-1zA-1z-1y=zA-1z-11sty2ndy
28 id yA-1yA-1
29 26 28 eqeltrrd yA-11sty2ndyA-1
30 sneq z=1sty2ndyz=1sty2ndy
31 30 cnveqd z=1sty2ndyz-1=1sty2ndy-1
32 31 unieqd z=1sty2ndyz-1=1sty2ndy-1
33 opswap 1sty2ndy-1=2ndy1sty
34 32 33 eqtrdi z=1sty2ndyz-1=2ndy1sty
35 eqid zA-1z-1=zA-1z-1
36 opex 2ndy1styV
37 34 35 36 fvmpt 1sty2ndyA-1zA-1z-11sty2ndy=2ndy1sty
38 29 37 syl yA-1zA-1z-11sty2ndy=2ndy1sty
39 27 38 eqtrd yA-1zA-1z-1y=2ndy1sty
40 39 adantl φyA-1zA-1z-1y=2ndy1sty
41 15 17 24 40 5 fsumf1o φxAB=yA-12ndy/j1sty/kD
42 csbeq1a y=1sty2ndyC=1sty2ndy/yC
43 26 42 syl yA-1C=1sty2ndy/yC
44 opex kjV
45 44 2 csbie kj/yC=D
46 opeq12 k=1styj=2ndykj=1sty2ndy
47 46 ancoms j=2ndyk=1stykj=1sty2ndy
48 47 csbeq1d j=2ndyk=1stykj/yC=1sty2ndy/yC
49 45 48 eqtr3id j=2ndyk=1styD=1sty2ndy/yC
50 7 8 49 csbie2 2ndy/j1sty/kD=1sty2ndy/yC
51 43 50 eqtr4di yA-1C=2ndy/j1sty/kD
52 51 sumeq2i yA-1C=yA-12ndy/j1sty/kD
53 41 52 eqtr4di φxAB=yA-1C