Description: A shorter sum of nonnegative terms is smaller than a longer one. (Contributed by NM, 26-Dec-2005) (Proof shortened by Mario Carneiro, 24-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsumge0.1 | |
|
fsumge0.2 | |
||
fsumge0.3 | |
||
fsumless.4 | |
||
Assertion | fsumless | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumge0.1 | |
|
2 | fsumge0.2 | |
|
3 | fsumge0.3 | |
|
4 | fsumless.4 | |
|
5 | difss | |
|
6 | ssfi | |
|
7 | 1 5 6 | sylancl | |
8 | eldifi | |
|
9 | 8 2 | sylan2 | |
10 | 8 3 | sylan2 | |
11 | 7 9 10 | fsumge0 | |
12 | 1 4 | ssfid | |
13 | 4 | sselda | |
14 | 13 2 | syldan | |
15 | 12 14 | fsumrecl | |
16 | 7 9 | fsumrecl | |
17 | 15 16 | addge01d | |
18 | 11 17 | mpbid | |
19 | disjdif | |
|
20 | 19 | a1i | |
21 | undif | |
|
22 | 4 21 | sylib | |
23 | 22 | eqcomd | |
24 | 2 | recnd | |
25 | 20 23 1 24 | fsumsplit | |
26 | 18 25 | breqtrrd | |