Metamath Proof Explorer


Theorem fsumless

Description: A shorter sum of nonnegative terms is smaller than a longer one. (Contributed by NM, 26-Dec-2005) (Proof shortened by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses fsumge0.1 φAFin
fsumge0.2 φkAB
fsumge0.3 φkA0B
fsumless.4 φCA
Assertion fsumless φkCBkAB

Proof

Step Hyp Ref Expression
1 fsumge0.1 φAFin
2 fsumge0.2 φkAB
3 fsumge0.3 φkA0B
4 fsumless.4 φCA
5 difss ACA
6 ssfi AFinACAACFin
7 1 5 6 sylancl φACFin
8 eldifi kACkA
9 8 2 sylan2 φkACB
10 8 3 sylan2 φkAC0B
11 7 9 10 fsumge0 φ0kACB
12 1 4 ssfid φCFin
13 4 sselda φkCkA
14 13 2 syldan φkCB
15 12 14 fsumrecl φkCB
16 7 9 fsumrecl φkACB
17 15 16 addge01d φ0kACBkCBkCB+kACB
18 11 17 mpbid φkCBkCB+kACB
19 disjdif CAC=
20 19 a1i φCAC=
21 undif CACAC=A
22 4 21 sylib φCAC=A
23 22 eqcomd φA=CAC
24 2 recnd φkAB
25 20 23 1 24 fsumsplit φkAB=kCB+kACB
26 18 25 breqtrrd φkCBkAB