Metamath Proof Explorer


Theorem fsumm1

Description: Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 26-Apr-2014)

Ref Expression
Hypotheses fsumm1.1 φNM
fsumm1.2 φkMNA
fsumm1.3 k=NA=B
Assertion fsumm1 φk=MNA=k=MN1A+B

Proof

Step Hyp Ref Expression
1 fsumm1.1 φNM
2 fsumm1.2 φkMNA
3 fsumm1.3 k=NA=B
4 eluzelz NMN
5 1 4 syl φN
6 fzsn NNN=N
7 5 6 syl φNN=N
8 7 ineq2d φMN1NN=MN1N
9 5 zred φN
10 9 ltm1d φN1<N
11 fzdisj N1<NMN1NN=
12 10 11 syl φMN1NN=
13 8 12 eqtr3d φMN1N=
14 eluzel2 NMM
15 1 14 syl φM
16 peano2zm MM1
17 15 16 syl φM1
18 15 zcnd φM
19 ax-1cn 1
20 npcan M1M-1+1=M
21 18 19 20 sylancl φM-1+1=M
22 21 fveq2d φM-1+1=M
23 1 22 eleqtrrd φNM-1+1
24 eluzp1m1 M1NM-1+1N1M1
25 17 23 24 syl2anc φN1M1
26 fzsuc2 MN1M1MN-1+1=MN1N-1+1
27 15 25 26 syl2anc φMN-1+1=MN1N-1+1
28 5 zcnd φN
29 npcan N1N-1+1=N
30 28 19 29 sylancl φN-1+1=N
31 30 oveq2d φMN-1+1=MN
32 27 31 eqtr3d φMN1N-1+1=MN
33 30 sneqd φN-1+1=N
34 33 uneq2d φMN1N-1+1=MN1N
35 32 34 eqtr3d φMN=MN1N
36 fzfid φMNFin
37 13 35 36 2 fsumsplit φk=MNA=k=MN1A+kNA
38 3 eleq1d k=NAB
39 2 ralrimiva φkMNA
40 eluzfz2 NMNMN
41 1 40 syl φNMN
42 38 39 41 rspcdva φB
43 3 sumsn NMBkNA=B
44 1 42 43 syl2anc φkNA=B
45 44 oveq2d φk=MN1A+kNA=k=MN1A+B
46 37 45 eqtrd φk=MNA=k=MN1A+B