| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumm1.1 |  | 
						
							| 2 |  | fsumm1.2 |  | 
						
							| 3 |  | fsumm1.3 |  | 
						
							| 4 |  | eluzelz |  | 
						
							| 5 | 1 4 | syl |  | 
						
							| 6 |  | fzsn |  | 
						
							| 7 | 5 6 | syl |  | 
						
							| 8 | 7 | ineq2d |  | 
						
							| 9 | 5 | zred |  | 
						
							| 10 | 9 | ltm1d |  | 
						
							| 11 |  | fzdisj |  | 
						
							| 12 | 10 11 | syl |  | 
						
							| 13 | 8 12 | eqtr3d |  | 
						
							| 14 |  | eluzel2 |  | 
						
							| 15 | 1 14 | syl |  | 
						
							| 16 |  | peano2zm |  | 
						
							| 17 | 15 16 | syl |  | 
						
							| 18 | 15 | zcnd |  | 
						
							| 19 |  | ax-1cn |  | 
						
							| 20 |  | npcan |  | 
						
							| 21 | 18 19 20 | sylancl |  | 
						
							| 22 | 21 | fveq2d |  | 
						
							| 23 | 1 22 | eleqtrrd |  | 
						
							| 24 |  | eluzp1m1 |  | 
						
							| 25 | 17 23 24 | syl2anc |  | 
						
							| 26 |  | fzsuc2 |  | 
						
							| 27 | 15 25 26 | syl2anc |  | 
						
							| 28 | 5 | zcnd |  | 
						
							| 29 |  | npcan |  | 
						
							| 30 | 28 19 29 | sylancl |  | 
						
							| 31 | 30 | oveq2d |  | 
						
							| 32 | 27 31 | eqtr3d |  | 
						
							| 33 | 30 | sneqd |  | 
						
							| 34 | 33 | uneq2d |  | 
						
							| 35 | 32 34 | eqtr3d |  | 
						
							| 36 |  | fzfid |  | 
						
							| 37 | 13 35 36 2 | fsumsplit |  | 
						
							| 38 | 3 | eleq1d |  | 
						
							| 39 | 2 | ralrimiva |  | 
						
							| 40 |  | eluzfz2 |  | 
						
							| 41 | 1 40 | syl |  | 
						
							| 42 | 38 39 41 | rspcdva |  | 
						
							| 43 | 3 | sumsn |  | 
						
							| 44 | 1 42 43 | syl2anc |  | 
						
							| 45 | 44 | oveq2d |  | 
						
							| 46 | 37 45 | eqtrd |  |