Description: Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 26-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsumm1.1 | |
|
fsumm1.2 | |
||
fsumm1.3 | |
||
Assertion | fsumm1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumm1.1 | |
|
2 | fsumm1.2 | |
|
3 | fsumm1.3 | |
|
4 | eluzelz | |
|
5 | 1 4 | syl | |
6 | fzsn | |
|
7 | 5 6 | syl | |
8 | 7 | ineq2d | |
9 | 5 | zred | |
10 | 9 | ltm1d | |
11 | fzdisj | |
|
12 | 10 11 | syl | |
13 | 8 12 | eqtr3d | |
14 | eluzel2 | |
|
15 | 1 14 | syl | |
16 | peano2zm | |
|
17 | 15 16 | syl | |
18 | 15 | zcnd | |
19 | ax-1cn | |
|
20 | npcan | |
|
21 | 18 19 20 | sylancl | |
22 | 21 | fveq2d | |
23 | 1 22 | eleqtrrd | |
24 | eluzp1m1 | |
|
25 | 17 23 24 | syl2anc | |
26 | fzsuc2 | |
|
27 | 15 25 26 | syl2anc | |
28 | 5 | zcnd | |
29 | npcan | |
|
30 | 28 19 29 | sylancl | |
31 | 30 | oveq2d | |
32 | 27 31 | eqtr3d | |
33 | 30 | sneqd | |
34 | 33 | uneq2d | |
35 | 32 34 | eqtr3d | |
36 | fzfid | |
|
37 | 13 35 36 2 | fsumsplit | |
38 | 3 | eleq1d | |
39 | 2 | ralrimiva | |
40 | eluzfz2 | |
|
41 | 1 40 | syl | |
42 | 38 39 41 | rspcdva | |
43 | 3 | sumsn | |
44 | 1 42 43 | syl2anc | |
45 | 44 | oveq2d | |
46 | 37 45 | eqtrd | |