| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-nel |  | 
						
							| 2 |  | disjsn |  | 
						
							| 3 | 1 2 | sylbb2 |  | 
						
							| 4 | 3 | adantl |  | 
						
							| 5 | 4 | 3ad2ant2 |  | 
						
							| 6 |  | eqidd |  | 
						
							| 7 |  | snfi |  | 
						
							| 8 |  | unfi |  | 
						
							| 9 | 7 8 | mpan2 |  | 
						
							| 10 | 9 | 3ad2ant1 |  | 
						
							| 11 |  | rspcsbela |  | 
						
							| 12 | 11 | expcom |  | 
						
							| 13 | 12 | 3ad2ant3 |  | 
						
							| 14 | 13 | imp |  | 
						
							| 15 | 14 | zcnd |  | 
						
							| 16 | 5 6 10 15 | fsumsplit |  | 
						
							| 17 |  | csbeq1a |  | 
						
							| 18 |  | nfcv |  | 
						
							| 19 |  | nfcsb1v |  | 
						
							| 20 | 17 18 19 | cbvsum |  | 
						
							| 21 | 17 18 19 | cbvsum |  | 
						
							| 22 | 17 18 19 | cbvsum |  | 
						
							| 23 | 21 22 | oveq12i |  | 
						
							| 24 | 16 20 23 | 3eqtr4g |  | 
						
							| 25 |  | simp2l |  | 
						
							| 26 |  | snidg |  | 
						
							| 27 | 26 | adantr |  | 
						
							| 28 | 27 | 3ad2ant2 |  | 
						
							| 29 |  | elun2 |  | 
						
							| 30 | 28 29 | syl |  | 
						
							| 31 |  | simp3 |  | 
						
							| 32 |  | rspcsbela |  | 
						
							| 33 | 30 31 32 | syl2anc |  | 
						
							| 34 | 33 | zcnd |  | 
						
							| 35 |  | sumsns |  | 
						
							| 36 | 25 34 35 | syl2anc |  | 
						
							| 37 | 36 | oveq2d |  | 
						
							| 38 | 24 37 | eqtrd |  |