Metamath Proof Explorer


Theorem fsumsplitsnun

Description: Separate out a term in a finite sum by splitting the sum into two parts. (Contributed by Alexander van der Vekens, 1-Sep-2018) (Revised by AV, 17-Dec-2021)

Ref Expression
Assertion fsumsplitsnun AFinZVZAkAZBkAZB=kAB+Z/kB

Proof

Step Hyp Ref Expression
1 df-nel ZA¬ZA
2 disjsn AZ=¬ZA
3 1 2 sylbb2 ZAAZ=
4 3 adantl ZVZAAZ=
5 4 3ad2ant2 AFinZVZAkAZBAZ=
6 eqidd AFinZVZAkAZBAZ=AZ
7 snfi ZFin
8 unfi AFinZFinAZFin
9 7 8 mpan2 AFinAZFin
10 9 3ad2ant1 AFinZVZAkAZBAZFin
11 rspcsbela xAZkAZBx/kB
12 11 expcom kAZBxAZx/kB
13 12 3ad2ant3 AFinZVZAkAZBxAZx/kB
14 13 imp AFinZVZAkAZBxAZx/kB
15 14 zcnd AFinZVZAkAZBxAZx/kB
16 5 6 10 15 fsumsplit AFinZVZAkAZBxAZx/kB=xAx/kB+xZx/kB
17 nfcv _xB
18 nfcsb1v _kx/kB
19 csbeq1a k=xB=x/kB
20 17 18 19 cbvsumi kAZB=xAZx/kB
21 17 18 19 cbvsumi kAB=xAx/kB
22 17 18 19 cbvsumi kZB=xZx/kB
23 21 22 oveq12i kAB+kZB=xAx/kB+xZx/kB
24 16 20 23 3eqtr4g AFinZVZAkAZBkAZB=kAB+kZB
25 simp2l AFinZVZAkAZBZV
26 snidg ZVZZ
27 26 adantr ZVZAZZ
28 27 3ad2ant2 AFinZVZAkAZBZZ
29 elun2 ZZZAZ
30 28 29 syl AFinZVZAkAZBZAZ
31 simp3 AFinZVZAkAZBkAZB
32 rspcsbela ZAZkAZBZ/kB
33 30 31 32 syl2anc AFinZVZAkAZBZ/kB
34 33 zcnd AFinZVZAkAZBZ/kB
35 sumsns ZVZ/kBkZB=Z/kB
36 25 34 35 syl2anc AFinZVZAkAZBkZB=Z/kB
37 36 oveq2d AFinZVZAkAZBkAB+kZB=kAB+Z/kB
38 24 37 eqtrd AFinZVZAkAZBkAZB=kAB+Z/kB