Metamath Proof Explorer


Theorem fthmon

Description: A faithful functor reflects monomorphisms. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses fthmon.b B=BaseC
fthmon.h H=HomC
fthmon.f φFCFaithDG
fthmon.x φXB
fthmon.y φYB
fthmon.r φRXHY
fthmon.m M=MonoC
fthmon.n N=MonoD
fthmon.1 φXGYRFXNFY
Assertion fthmon φRXMY

Proof

Step Hyp Ref Expression
1 fthmon.b B=BaseC
2 fthmon.h H=HomC
3 fthmon.f φFCFaithDG
4 fthmon.x φXB
5 fthmon.y φYB
6 fthmon.r φRXHY
7 fthmon.m M=MonoC
8 fthmon.n N=MonoD
9 fthmon.1 φXGYRFXNFY
10 eqid BaseD=BaseD
11 eqid HomD=HomD
12 eqid compD=compD
13 fthfunc CFaithDCFuncD
14 13 ssbri FCFaithDGFCFuncDG
15 3 14 syl φFCFuncDG
16 df-br FCFuncDGFGCFuncD
17 15 16 sylib φFGCFuncD
18 funcrcl FGCFuncDCCatDCat
19 17 18 syl φCCatDCat
20 19 simprd φDCat
21 20 adantr φzBfzHXgzHXDCat
22 15 adantr φzBfzHXgzHXFCFuncDG
23 1 10 22 funcf1 φzBfzHXgzHXF:BBaseD
24 4 adantr φzBfzHXgzHXXB
25 23 24 ffvelcdmd φzBfzHXgzHXFXBaseD
26 5 adantr φzBfzHXgzHXYB
27 23 26 ffvelcdmd φzBfzHXgzHXFYBaseD
28 simpr1 φzBfzHXgzHXzB
29 23 28 ffvelcdmd φzBfzHXgzHXFzBaseD
30 9 adantr φzBfzHXgzHXXGYRFXNFY
31 1 2 11 22 28 24 funcf2 φzBfzHXgzHXzGX:zHXFzHomDFX
32 simpr2 φzBfzHXgzHXfzHX
33 31 32 ffvelcdmd φzBfzHXgzHXzGXfFzHomDFX
34 simpr3 φzBfzHXgzHXgzHX
35 31 34 ffvelcdmd φzBfzHXgzHXzGXgFzHomDFX
36 10 11 12 8 21 25 27 29 30 33 35 moni φzBfzHXgzHXXGYRFzFXcompDFYzGXf=XGYRFzFXcompDFYzGXgzGXf=zGXg
37 eqid compC=compC
38 6 adantr φzBfzHXgzHXRXHY
39 1 2 37 12 22 28 24 26 32 38 funcco φzBfzHXgzHXzGYRzXcompCYf=XGYRFzFXcompDFYzGXf
40 1 2 37 12 22 28 24 26 34 38 funcco φzBfzHXgzHXzGYRzXcompCYg=XGYRFzFXcompDFYzGXg
41 39 40 eqeq12d φzBfzHXgzHXzGYRzXcompCYf=zGYRzXcompCYgXGYRFzFXcompDFYzGXf=XGYRFzFXcompDFYzGXg
42 3 adantr φzBfzHXgzHXFCFaithDG
43 19 simpld φCCat
44 43 adantr φzBfzHXgzHXCCat
45 1 2 37 44 28 24 26 32 38 catcocl φzBfzHXgzHXRzXcompCYfzHY
46 1 2 37 44 28 24 26 34 38 catcocl φzBfzHXgzHXRzXcompCYgzHY
47 1 2 11 42 28 26 45 46 fthi φzBfzHXgzHXzGYRzXcompCYf=zGYRzXcompCYgRzXcompCYf=RzXcompCYg
48 41 47 bitr3d φzBfzHXgzHXXGYRFzFXcompDFYzGXf=XGYRFzFXcompDFYzGXgRzXcompCYf=RzXcompCYg
49 1 2 11 42 28 24 32 34 fthi φzBfzHXgzHXzGXf=zGXgf=g
50 36 48 49 3bitr3d φzBfzHXgzHXRzXcompCYf=RzXcompCYgf=g
51 50 biimpd φzBfzHXgzHXRzXcompCYf=RzXcompCYgf=g
52 51 ralrimivvva φzBfzHXgzHXRzXcompCYf=RzXcompCYgf=g
53 1 2 37 7 43 4 5 ismon2 φRXMYRXHYzBfzHXgzHXRzXcompCYf=RzXcompCYgf=g
54 6 52 53 mpbir2and φRXMY